
Three hour tutorial

data.table
30 June 2014

useR! - Los Angeles

Matt Dowle

2

 data.table in a nutshell 20 mins
 Client server recorded demo 20 mins
 Main features in more detail 2 hours
 Q&A throughout 20 mins

Every question is a good question!

Feel free to interrupt.

Overview

3

What is data.table?

 Think data.frame, inherits from it

 data.table() and ?data.table

Goals:
 Reduce programming time

fewer function calls, less variable name repetition

 Reduce compute time
fast aggregation, update by reference

 In-memory only, 64bit and 100GB routine
 Useful in finance but wider use in mind, too

 e.g. genomics

4

Reducing programming time

trades[

 filledShares < orderedShares,

 sum((orderedShares-filledShares)
 * orderPrice / fx),

 by = "date,region,algo"

]

R : i j by

SQL : WHERE SELECT GROUP BY

Aside : could add
database backend

5

Reducing compute time

e.g. 10 million rows x 3 columns x,y,v 230MB

DF[DF$x=="R" & DF$y==123,] # 8 s

DT[.("R",123)] # 0.008s

tapply(DFv,DFx,sum) # 22 s

DT[,sum(v),by=x] # 0.83s

See above in timings vignette (copy and paste)

6

Fast and friendly file reading

e.g. 50MB .csv, 1 million rows x 6 columns

read.csv("test.csv") # 30-60s

read.csv("test.csv", colClasses=,
 nrows=, etc...) # 10s

fread("test.csv") # 3s

e.g. 20GB .csv, 200 million rows x 16 columns

read.csv(” big.csv ” , ...) # hours

fread("big.csv") # 8m

7

Update by reference using :=

Add new column ”sectorMCAP” by group :

DT[,sectorMCAP:=sum(MCAP),by=Sector]

Delete a column (0.00s even on 20GB table) :

DT[,colToDelete:=NULL]

Be explicit to really copy entire 20GB :

DT2 = copy(DT)

8

Why R?

1) R's lazy evaluation enables the syntax :
 DT[filledShares < orderedShares]
 query optimization before evaluation

2) Pass DT to any package taking DF. It works.
 is.data.frame(DT) == TRUE

3) CRAN (cross platform release, quality control)

4) Thousands of statistical packages to use with
 data.table

9

Web page visits

10

Downloads
RStudio mirror only

11

data.table support

12

Client/server recorded demo
http://www.youtube.com/watch?v=rvT8XThGA8o

http://www.youtube.com/watch?v=rvT8XThGA8o

13

Main features in more detail ...

14

Essential!

 Given a 10,000 x 10,000 matrix in any
language

 Sum the rows
 Sum the columns
 Is one way faster, and why?

15

setkey(DT, colA, colB)

 Sorts the table by colA then colB. That's all.
 Like a telephone number directory: last name

then first name
 X[Y] is just binary search to X's key
 You DO need a key for joins X[Y]
 You DO NOT need a key for by= (but many

examples online include it)

16

Example DT

x y

B 7

A 2

B 1

A 5

B 9

17

DT[2:3,]

x y

B 7

A 2

B 1

A 5

B 9

18

DT

x y

B 7

A 2

B 1

A 5

B 9

19

setkey(DT, x)

x y

A 2

A 5

B 7

B 1

B 9

20

DT[”B”,]

x y

A 2

A 5

B 7

B 1

B 9

21

DT[”B”,mult=”first”]

x y

A 2

A 5

B 7

B 1

B 9

22

DT[”B”,mult=”last”]

x y

A 2

A 5

B 7

B 1

B 9

23

DT[”B”,sum(y)] == 17

x y

A 2

A 5

B 7

B 1

B 9

24

DT[c(”A”,”B”),sum(y)] == 24

x y

A 2

A 5

B 7

B 1

B 9

25

X[Y]

A 2

A 5

B 7

B 1

B 9

B 11

C 12

B 7 11

B 1 11
B 9 11
C NA 12

[]=

Outer join by default (in SQL parlance)

26

X[Y, nomatch=0]

A 2

A 5

B 7

B 1

B 9

B 11

C 12[]=
B 7 11

B 1 11
B 9 11

Inner join

27

X[Y,head(.SD,n),by=.EACHI]

x y
A 2

A 5

B 7

B 1

B 9

z n
A 1
B 2[]=

i.e. select a data driven topN for each i row

Join inherited column

x y
A 2
B 7
B 1

28

”Cold” by (i.e. without setkey)

Consecutive calls unrelated to key are fine and
common practice :

> DT[, sum(v), by="x,y"]

> DT[, sum(v), by="z"]

> DT[, sum(v), by=colA%%5]

Also known as "ad hoc by"

29

Programatically vary by

bys = list (quote(y%%2),
 quote(x),
 quote(y%%3))

for (this in bys)
 print(X[,sum(y),by=eval(this)])

 this V1
1: 0 2
2: 1 22
 this V1
1: A 7
2: B 17
 this V1
1: 2 7
2: 1 8
3: 0 9

30

DT[i, j, by]

 Out loud: ”Take DT, subset rows using i, then
calculate j grouped by by”

 Once you grok the above reading, you don't
need to memorize any other functions as all
operations follow the same intuition as base.

31

 June 2012

32

data.table answer

NB: It isn't just the speed, but the simplicity. It's easy to
write and easy to read.

33

User's reaction

”data.table is awesome! That took about 3
seconds for the whole thing!!!”

Davy Kavanagh, 15 Jun 2012

34

but ...

 Example had by=key(dt) ?

 Yes, but it didn't need to.

 If the data is very large (1GB+) and the groups
are big too then getting the groups together in
memory can speed up a bit (cache efficiency).

35

by= and keyby=

 Both by and keyby retain row order within
groups – important, often relied on

 Unlike SQL
 by retains order of the groups (by order of first

appearance) - important, often relied on

setkeyv(DT[,,by=],by)

DT[,,keyby=] # same, shortcut

36

Prevailing joins (roll=TRUE)

 One reason for setkey's design.
 Last Observation (the prevailing one) Carried

Forward (LOCF), efficiently
 Roll forwards or backward
 Roll the last observation forwards, or not
 Roll the first observation backwards, or not
 Limit the roll; e.g. 30 days (roll = 30)
 Join to nearest value (roll = ”nearest”)
 i.e. ordered joins

37

… continued

 roll = [-Inf,+Inf] |

 TRUE | FALSE |

 ”nearest”

 rollends = c(FALSE,TRUE)

 By example ...

38

setkey(PRC, id, date)
1. PRC[.(“SBRY”)] # all 3 rows
2. PRC[.(“SBRY”,20080502),price] # 391.50
3. PRC[.(“SBRY”,20080505),price] # NA
4. PRC[.(“SBRY”,20080505),price,roll=TRUE] # 391.50
5. PRC[.(“SBRY”,20080601),price,roll=TRUE] # 389.00
6. PRC[.(“SBRY”,20080601),price,roll=TRUE,rollends=FALSE] # NA
7. PRC[.(“SBRY”,20080601),price,roll=20] # NA
8. PRC[.(“SBRY”,20080601),price,roll=40] # 389.00

PRC

39

Performance

All daily prices 1986-2008 for all non-US equities
• 183,000,000 rows (id, date, price)
• 2.7 GB

system.time(PRICES[id==”VOD”]) # vector scan
user system elapsed
66.431 15.395 81.831

system.time(PRICES[“VOD”]) # binary search
user system elapsed
0.003 0.000 0.002

setkey(PRICES, id, date) needed first (one-off apx 20 secs)

40

roll = ”nearest”

x y value
A 2 1.1
A 9 1.2
A 11 1.3
B 3 1.4

setkey(DT, x, y)

DT[.(”A”,7), roll=”nearest”]

41

Variable name repetition

 The 3rd highest voted [R] question (of 43k)

How to sort a dataframe by column(s) in R (*)
 DF[with(DF, order(-z, b)),]

- vs -
DT[order(-z, b)]

 quarterlyreport[with(lastquarterlyreport,order(-
z,b)),]
- vs -
quarterlyreport[order(-z, b)]

(*) Click link for more information

Silent incorrect results due to using a similar variable by
mistake. Easily done when this appears on a page of code.

http://stackoverflow.com/a/10758086/403310

42

but ...

 Yes order() is slow when used in i because
that's base R's order().

 That's where ”optimization before evaluation”
comes in. We now auto convert order() to the
internal forder() so you don't have to know.

 Available in v1.9.3 on GitHub, soon on CRAN

43

split-apply-combine

Why ”split” 10GB into many small groups???

Since 2010, data.table :
 Allocates memory for largest group
 Reuses that same memory for all groups
 Allocates result data.table up front
 Implemented in C
 eval() of j within each group

44

Recent innovations

 Instead of the eval(j) from C, dplyr converts to
an Rcpp function and calls that from C.
Skipping the R eval step.

 In response, data.table now has GForce: one
function call that computes the aggregate
across groups. Called once only so no need to
speed up many calls!

 Both approaches limited to simple aggregates:
sum, mean, sd, etc. But often that's all that's
needed.

45

data.table over-allocates

46

Assigning to a subset

47

continued

Easy to write, easy to read

48

Multiple :=

DT[, `:=`(newCol1=mean(colA),

 newCol2=sd(colA)),

 by=sector]

 Can combine with a subset in i as well
 `:=` is functional form and standard R

e.g. `<-` and `=`(x,2)

49

set* functions

 set()
 setattr()
 setnames()
 setcolorder()
 setkey()
 setkeyv()
 setDT()
 setorder()

50

copy()

 data.table IS copied-on-change by <- and = as
usual in R. Those ops aren't changed.

 No copy by := or set*

 You have to use those, so it's clear to readers
of your code

 When you need a copy, call copy(DT)
 Why copy a 20GB data.table, even once.
 Why copy a whole column, even once.

51

list columns

 Each cell can be a different type
 Each cell can be vector
 Each cell can itself be a data.table
 Combine list columns with i and by

52

list column example

data.table(
 x = letters[1:3],

y = list(1:10,
letters[1:4],
data.table(a=1:3,b=4:6)

))
x y

1: a 1,2,3,4,5,6,
2: b a,b,c,d
3: c <data.table>

53

All options

datatable.verbose FALSE

datatable.nomatch NA_integer_

datatable.optimize Inf

datatable.print.nrows 100L

datatable.print.topn 5L

datatable.allow.cartesian FALSE

datatable.alloccol quote(max(100L,ncol(DT)+64L))

datatable.integer64 ” integer64”

54

All symbols

 .N
 .SD
 .I
 .BY
 .GRP

55

.SD

stocks[, head(.SD,2), by=sector]

stocks[, lapply(.SD, sum), by=sector]

stocks[, lapply(.SD, sum), by=sector,
.SDcols=c("mcap",paste0(revenueFQ",1:8))]

56

.I
if (length(err <- allocation[,
 if(length(unique(Price))>1) .I,
 by=stock]$V1)) {

 warning("Fills allocated to different
accounts at different prices! Investigate.")

 print(allocation[err])

} else {

 cat("Ok All fills allocated to each
account at same price\n")

}

57

Analogous to SQL

 DT[where,

 select | update,

 group by]

 [having]

 [order by]

 [i, j, by] ... [i, j, by]

i.e. chaining

58

New in v1.9.2 on CRAN

 37 new features and 43 bug fixes
 set() can now add columns just like :=
 .SDcols “de-select” columns by name or

position; e.g.,
DT[,lapply(.SD,mean),by=colA,.SDcols=-c(3,4)]

 fread() a subset of columns
 fread() commands; e.g.,
fread("grep blah file.txt")

 Speed gains

59

Radix sort for integer

 R's method=”radix” is not actually a radix sort
… it's a counting sort. See ?setkey/Notes.

 data.table liked and used it, though.
 A true radix sort caters for range > 100,000
 (Negatives was a one line change to R we

suggested and was accepted in R 3.1)
 Adapted to integer from Terdiman and Herf's

code for float …

60

Radix sort for numeric

 R reminder: numeric == floating point numbers

 Radix Sort Revisited, Pierre Terdiman, 2000

http://codercorner.com/RadixSortRevisited.htm

 Radix Tricks, Michael Herf, 2001

http://stereopsis.com/radix.html

 Their C code now in data.table with minor
changes; e.g., NA/NaN and 6-pass for double

http://codercorner.com/RadixSortRevisited.htm
http://stereopsis.com/radix.html

61

Radix sort for numeric

 R reminder: numeric == floating point numbers

 Radix Sort Revisited, Pierre Terdiman, 2000

http://codercorner.com/RadixSortRevisited.htm

 Radix Tricks, Michael Herf, 2001

http://stereopsis.com/radix.html

 Their C code now in data.table with minor
changes; e.g., NA/NaN and 6-pass for double

http://codercorner.com/RadixSortRevisited.htm
http://stereopsis.com/radix.html

62

Faster for those cases

20 million rows x 4 columns, 539MB

a & b (numeric), c (integer), d (character)

v1.8.10 v1.9.2

setkey(DT, a) 54.9s 5.3s

setkey(DT, c) 48.0s 3.9s

setkey(DT, a, b) 102.3s 6.9s

”Cold” grouping (no setkey first) :

DT[, mean(b), by=c] 47.0s 3.4s
https://gist.github.com/arunsrinivasan/451056660118628befff

https://gist.github.com/arunsrinivasan/451056660118628befff

63

New feature: melt

i.e. reshape2 for data.table

20 million rows x 6 columns (a:f) 768MB

melt(DF, id=”d”, measure=1:2) 4.1s (*)

melt(DT, id=“d”, measure=1:2) 1.7s
(*) including Kevin Ushey's C code in reshape2, was 190s

melt(DF, …, na.rm=TRUE) 39.5s

melt(DT, …, na.rm=TRUE) 2.7s

https://gist.github.com/arunsrinivasan/451056660118628befff

https://gist.github.com/arunsrinivasan/451056660118628befff

64

New feature: dcast

i.e. reshape2 for data.table

20 million rows x 6 columns (a:f) 768MB

dcast(DF, d~e, ..., fun=sum) 76.7 sec

dcast(DT, d~e, …, fun=sum) 7.5 sec

reshape2::dcast hasn't been Kevin'd yet

https://gist.github.com/arunsrinivasan/451056660118628befff

https://gist.github.com/arunsrinivasan/451056660118628befff

65

… melt/dcast continued

Q: Why not submit a pull request to reshape2 ?

A: This C implementation calls data.table internals
at C-level (e.g. fastorder, grouping, and joins). It
makes sense for this code to be together.

66

Miscellaneous 1

DT[, (myvar):=NULL]

Spaces and specials; e.g., by="a, b, c"

DT[4:7,newCol:=8][]
 extra [] to print at prompt

 auto fills rows 1:3 with NA

rbindlist(lapply(fileNames, fread))

rbindlist has fill and use.names

67

Miscellaneous 2

Dates and times

Errors & warnings are deliberately very long

Not joins X[!Y]

Column plonk & non-coercion on assign

by-without-by => by=.EACHI

Secondary keys / merge

R3, singleton logicals, reference counting

bit64::integer64

68

Miscellaneous 3

Print method vs typing DF, copy fixed in R-devel

How to benchmark

mult = ”all” | ”first” | ”last” (may expand)

with=FALSE

which=TRUE

CJ() and SJ()

Chained queries: DT[...][...][...]

Dynamic and flexible queries (eval text and quote)

69

Miscellaneous 4

fread drop and select (by name or number)

fread colClasses can be ranges of columns

fread sep2

Vector search vs binary search

One column == is ok, but not 2+ due to
temporary logicals (e.g. slide 5 earlier)

70

Not (that) much to learn

 Main manual page: ?data.table

 Run example(data.table) at the prompt (53
examples)

 No methods, no functions, just use what you're
used to in R

71

Thank you

https://github.com/Rdatatable/datatable/

http://stackoverflow.com/questions/tagged/data.table

> install.packages(”data.table”)

> require(data.table)

> ?data.table

> ?fread

Learn by example :

> example(data.table)

https://github.com/Rdatatable/datatable/
http://stackoverflow.com/questions/tagged/data.table

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

