A B C E F I K L M O P R S T W misc
| rpf-package | rpf - Response Probability Functions |
| An introduction | rpf - Response Probability Functions |
| as.IFAgroup | Convert an OpenMx MxModel object into an IFA group |
| bestToOmit | Identify the columns with most missing data |
| chen.thissen.1997 | Computes local dependence indices for all pairs of items |
| ChenThissen1997 | Computes local dependence indices for all pairs of items |
| Class rpf.1dim | The base class for 1 dimensional response probability functions. |
| Class rpf.1dim.drm | Unidimensional dichotomous item models (1PL, 2PL, and 3PL). |
| Class rpf.1dim.gpcmp | Unidimensional generalized partial credit monotonic polynomial. |
| Class rpf.1dim.graded | The base class for 1 dimensional graded response probability functions. |
| Class rpf.1dim.grm | The unidimensional graded response item model. |
| Class rpf.1dim.grmp | Unidimensional graded response monotonic polynomial. |
| Class rpf.1dim.lmp | Unidimensional logistic function of a monotonic polynomial. |
| Class rpf.base | The base class for response probability functions. |
| Class rpf.mdim | The base class for multi-dimensional response probability functions. |
| Class rpf.mdim.drm | Multidimensional dichotomous item models (M1PL, M2PL, and M3PL). |
| Class rpf.mdim.graded | The base class for multi-dimensional graded response probability functions. |
| Class rpf.mdim.grm | The multidimensional graded response item model. |
| Class rpf.mdim.mcm | The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization). |
| Class rpf.mdim.nrm | The nominal response item model (both unidimensional and multidimensional models have the same parameterization). |
| collapseCategoricalCells | Collapse small sample size categorical frequency counts |
| compressDataFrame | Compress a data frame into unique rows and frequencies |
| crosstabTest | Monte-Carlo test for cross-tabulation tables |
| EAPscores | Compute Expected A Posteriori (EAP) scores |
| expandDataFrame | Expand summary table of patterns and frequencies |
| fromFactorLoading | Convert factor loadings to response function slopes |
| fromFactorThreshold | Convert factor thresholds to response function intercepts |
| itemOutcomeBySumScore | Produce an item outcome by observed sum-score table |
| kct | Knox Cube Test dataset |
| kct.items | Knox Cube Test dataset |
| kct.people | Knox Cube Test dataset |
| logit | Transform from [0,1] to the reals |
| LSAT6 | Description of LSAT6 data |
| LSAT7 | Description of LSAT7 data |
| multinomialFit | Multinomial fit test |
| observedSumScore | Compute the observed sum-score |
| omitItems | Omit the given items |
| omitMostMissing | Omit items with the most missing data |
| orderCompletely | Order a data.frame by missingness and all columns |
| ordinal.gamma | Compute the ordinal gamma association statistic |
| ptw2011.gof.test | Compute the P value that the observed and expected tables come from the same distribution |
| read.flexmirt | Read a flexMIRT PRM file |
| rpf | rpf - Response Probability Functions |
| rpf.1dim-class | The base class for 1 dimensional response probability functions. |
| rpf.1dim.drm-class | Unidimensional dichotomous item models (1PL, 2PL, and 3PL). |
| rpf.1dim.fit | Calculate item and person Rasch fit statistics |
| rpf.1dim.gpcmp-class | Unidimensional generalized partial credit monotonic polynomial. |
| rpf.1dim.graded-class | The base class for 1 dimensional graded response probability functions. |
| rpf.1dim.grm-class | The unidimensional graded response item model. |
| rpf.1dim.grmp-class | Unidimensional graded response monotonic polynomial. |
| rpf.1dim.lmp-class | Unidimensional logistic function of a monotonic polynomial. |
| rpf.1dim.moment | Calculate cell central moments |
| rpf.1dim.residual | Calculate residuals |
| rpf.1dim.stdresidual | Calculate standardized residuals |
| rpf.base-class | The base class for response probability functions. |
| rpf.dLL | Item parameter derivatives |
| rpf.dLL-method | Item parameter derivatives |
| rpf.drm | Create a dichotomous response model |
| rpf.dTheta | Item derivatives with respect to the location in the latent space |
| rpf.dTheta-method | Item derivatives with respect to the location in the latent space |
| rpf.gpcmp | Create monotonic polynomial generalized partial credit (GPC-MP) model |
| rpf.grm | Create a graded response model |
| rpf.grmp | Create monotonic polynomial graded response (GR-MP) model |
| rpf.id_of | Convert an rpf item model name to an ID |
| rpf.info | Map an item model, item parameters, and person trait score into a information vector |
| rpf.lmp | Create logistic function of a monotonic polynomial (LMP) model |
| rpf.logprob | Map an item model, item parameters, and person trait score into a probability vector |
| rpf.logprob-method | Map an item model, item parameters, and person trait score into a probability vector |
| rpf.mcm | Create a multiple-choice response model |
| rpf.mdim-class | The base class for multi-dimensional response probability functions. |
| rpf.mdim.drm-class | Multidimensional dichotomous item models (M1PL, M2PL, and M3PL). |
| rpf.mdim.graded-class | The base class for multi-dimensional graded response probability functions. |
| rpf.mdim.grm-class | The multidimensional graded response item model. |
| rpf.mdim.mcm-class | The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization). |
| rpf.mdim.nrm-class | The nominal response item model (both unidimensional and multidimensional models have the same parameterization). |
| rpf.mean.info | Find the point where an item provides mean maximum information |
| rpf.mean.info1 | Find the point where an item provides mean maximum information |
| rpf.modify | Create a similar item specification with the given number of factors |
| rpf.modify-method | Create a similar item specification with the given number of factors |
| rpf.nrm | Create a nominal response model |
| rpf.numParam | Length of the item parameter vector |
| rpf.numParam-method | Length of the item parameter vector |
| rpf.numSpec | Length of the item model vector |
| rpf.numSpec-method | Length of the item model vector |
| rpf.ogive | The ogive constant |
| rpf.paramInfo | Retrieve a description of the given parameter |
| rpf.paramInfo-method | Retrieve a description of the given parameter |
| rpf.prob | Map an item model, item parameters, and person trait score into a probability vector |
| rpf.prob-method | Map an item model, item parameters, and person trait score into a probability vector |
| rpf.rescale | Rescale item parameters |
| rpf.rescale-method | Rescale item parameters |
| rpf.rparam | Generates item parameters |
| rpf.rparam-method | Generates item parameters |
| rpf.sample | Randomly sample response patterns given a list of items |
| rpf_numParam_wrapper | Length of the item parameter vector |
| rpf_numSpec_wrapper | Length of the item model vector |
| rpf_paramInfo_wrapper | Retrieve a description of the given parameter |
| science | Liking for Science dataset |
| sfif | Liking for Science dataset |
| sfpf | Liking for Science dataset |
| sfsf | Liking for Science dataset |
| sfxf | Liking for Science dataset |
| SitemFit | Compute the S fit statistic for a set of items |
| SitemFit1 | Compute the S fit statistic for 1 item |
| stripData | Strip data and scores from an IFA group |
| sumScoreEAP | Compute the sum-score EAP table |
| sumScoreEAPTest | Conduct the sum-score EAP distribution test |
| tabulateRows | Tabulate data.frame rows |
| toFactorLoading | Convert response function slopes to factor loadings |
| toFactorThreshold | Convert response function intercepts to factor thresholds |
| write.flexmirt | Write a flexMIRT PRM file |
| $-method | The base class for response probability functions. |
| $<--method | The base class for response probability functions. |
| _rpf_dLL | Item parameter derivatives |
| _rpf_dTheta | Item derivatives with respect to the location in the latent space |
| _rpf_logprob | Map an item model, item parameters, and person trait score into a probability vector |
| _rpf_prob | Map an item model, item parameters, and person trait score into a probability vector |
| _rpf_rescale | Rescale item parameters |