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Predictive Modeling

Predictive modeling (aka machine learning)(aka pattern recognition)(. . .)
aims to generate the most accurate estimates of some quantity or event.

As these models are not generally meant to be descriptive and are usually
not well–suited for inference.

Good discussions of the contrast between predictive and
descriptive/inferential models can be found in Shmueli (2010) and
Breiman (2001)

Frank Harrell’s Design package is very good for modern approaches to
interpretable models, such as Cox’s proportional hazards model or ordinal
logistic regression.

Hastie et al (2009) is a good reference for theoretical descriptions of these
models while Kuhn and Johnson (2013) focus on the practice of predictive
modeling (and uses R).
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Modeling Conventions in R



The Formula Interface

There are two main conventions for specifying models in R: the formula
interface and the non–formula (or“matrix”) interface.

For the former, the predictors are explicitly listed in an R formula that
looks like: outcome ⇠ var1 + var2 + ....

For example, the formula

modelFunction(price ~ numBedrooms + numBaths + acres,

data = housingData)

would predict the closing price of a house using three quantitative
characteristics.
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The Formula Interface

The shortcut y ⇠ . can be used to indicate that all of the columns in the
data set (except y) should be used as a predictor.

The formula interface has many conveniences. For example,
transformations, such as log(acres) can be specified in–line.

It also autmatically converts factor predictors into dummy variables (using
a less than full rank encoding). For some R functions (e.g.
klaR:::NaiveBayes, rpart:::rpart, C50:::C5.0, . . . ), predictors are kept
as factors.

Unfortunately, R does not e�ciently store the information about the
formula. Using this interface with data sets that contain a large number of
predictors may unnecessarily slow the computations.
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The Matrix or Non–Formula Interface

The non–formula interface specifies the predictors for the model using a
matrix or data frame (all the predictors in the object are used in the
model).

The outcome data are usually passed into the model as a vector object.
For example:

modelFunction(x = housePredictors, y = price)

In this case, transformations of data or dummy variables must be created
prior to being passed to the function.

Note that not all R functions have both interfaces.
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Building and Predicting Models

Modeling in R generally follows the same workflow:

1 Create the model using the basic function:

fit <- knn(trainingData, outcome, k = 5)

2 Assess the properties of the model using print, plot. summary or
other methods

3 Predict outcomes for samples using the predict method:
predict(fit, newSamples).

The model can be used for prediction without changing the original model
object.
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Model Function Consistency

Since there are many modeling packages written by di↵erent people, there
are some inconsistencies in how models are specified and predictions are
made.

For example, many models have only one method of specifying the model
(e.g. formula method only)
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Generating Class Probabilities Using Di↵erent Packages

obj Class Package predict Function Syntax
lda MASS predict(obj) (no options needed)
glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

LogitBoost caTools predict(obj, type = "raw", nIter)
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type = "what?" (Per Package)
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The caret Package

The caret package was developed to:

create a unified interface for modeling and prediction (interfaces to
147 models)

streamline model tuning using resampling

provide a variety of “helper” functions and classes for day–to–day
model building tasks

increase computational e�ciency using parallel processing

First commits within Pfizer: 6/2005

First version on CRAN: 10/2007

Website/detailed help pages: http://caret.r-forge.r-project.org

JSS Paper: http://www.jstatsoft.org/v28/i05/paper

Applied Predictive Modeling Blog: http://appliedpredictivemodeling.com/
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Illustrative Data: Image Segmentation

We’ll use data from Hill et al (2007) to model how well cells in an image
are segmented (i.e. identified) in“high content screening” (Abraham et al,
2004).

Cells can be stained to bind to certain components of the cell (e.g.
nucleus) and fixed in a substance that preserves the nature state of the cell.

The sample is then interrogated by an instrument (such as a confocal
microscope) where the dye deflects light and the detectors quantify that
degree of scattering for that specific wavelength.

If multiple characteristics of the cells are desired, then multiple dyes and
multiple light frequencies can be used simultaneously.

The light scattering measurements are then processed through imaging
software to quantify the desired cell characteristics.
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Illustrative Data: Image Segmentation

In these images, the bright green boundaries identify the cell nucleus, while
the blue boundaries define the cell perimeter.

Clearly some cells are well–segmented, meaning that they have an accurate
assessment of the location and size of the cell. Others are poorly
segmented.

If cell size, shape, and/or quantity are the endpoints of interest in a study,
then it is important that the instrument and imaging software can
correctly segment cells.

Given a set of image measurements, how well can we predict which cells
are well–segmented (WS) or poorly–segmented (PS)?
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Illustrative Data: Image Segmentation
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Illustrative Data: Image Segmentation

The authors scored 2019 cells into these two bins.

They used four stains to highlight the cell body, the cell nucleus, actin and
tubulin (parts of the cytoskeleton).

These correspond to di↵erent optical channels (e.g. channel 3 measures
actin filaments).

The data are in the caret package.

The authors designated a training set (n = 1009) and a test set
(n = 1010).
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Illustrative Data: Image Segmentation

> data(segmentationData)

> # get rid of the cell identifier

> segmentationData$Cell <- NULL

>

> training <- subset(segmentationData, Case == "Train")

> testing <- subset(segmentationData, Case == "Test")

> training$Case <- NULL

> testing$Case <- NULL

> str(training[,1:6])

data.frame: 1009 obs. of 6 variables:
$ Class : Factor w/ 2 levels "PS","WS": 1 2 1 2 1 1 1 2 2 2 ...
$ AngleCh1 : num 133.8 106.6 69.2 109.4 104.3 ...
$ AreaCh1 : int 819 431 298 256 258 358 158 315 246 223 ...
$ AvgIntenCh1: num 31.9 28 19.5 18.8 17.6 ...
$ AvgIntenCh2: num 207 116 102 127 125 ...
$ AvgIntenCh3: num 69.9 63.9 28.2 13.6 22.5 ...

Since channel 1 is the cell body, AreaCh1 measures the size of the cell.
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Data Splitting and Estimating Performance



Model Building Steps

Common steps during model building are:

estimating model parameters (i.e. training models)

determining the values of tuning parameters that cannot be directly
calculated from the data

calculating the performance of the final model that will generalize to
new data

How do we“spend” the data to find an optimal model? We typically split
data into training and test data sets:

Training Set: these data are used to estimate model parameters and
to pick the values of the complexity parameter(s) for the model.

Test Set (aka validation set): these data can be used to get an
independent assessment of model e�cacy. They should not be used
during model training.
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Spending Our Data

The more data we spend, the better estimates we’ll get (provided the data
is accurate). Given a fixed amount of data,

too much spent in training won’t allow us to get a good assessment
of predictive performance. We may find a model that fits the training
data very well, but is not generalizable (over–fitting)

too much spent in testing won’t allow us to get a good assessment of
model parameters

Statistically, the best course of action would be to use all the data for
model building and use statistical methods to get good estimates of error.

From a non–statistical perspective, many consumers of of these models
emphasize the need for an untouched set of samples the evaluate
performance.
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Spending Our Data

There are a few di↵erent ways to do the split: simple random sampling,
stratified sampling based on the outcome, by date and methods that
focus on the distribution of the predictors.

The base R function sample can be used to create a completely random
sample of the data. The caret package has a function
createDataPartition that conducts data splits within groups of the
data.

For classification, this would mean sampling within the classes as to
preserve the distribution of the outcome in the training and test sets

For regression, the function determines the quartiles of the data set and
samples within those groups
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Estimating Performance

Later, once you have a set of predictions, various metrics can be used to
evaluate performance.

For regression models:

R2 is very popular. In many complex models, the notion of the model
degrees of freedom is di�cult. Unadjusted R2 can be used, but does
not penalize complexity. (caret:::RMSE, pls:::RMSEP)

the root mean square error is a common metric for understanding
the performance (caret:::Rsquared, pls:::R2)

Spearman’s correlation may be applicable for models that are used
to rank samples (cor(, method = "spearman"))

Of course, honest estimates of these statistics cannot be obtained by
predicting the same samples that were used to train the model.

A test set and/or resampling can provide good estimates.
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Estimating Performance For Classification

For classification models:

overall accuracy can be used, but this may be problematic when the
classes are not balanced.

the Kappa statistic takes into account the expected error rate:

 =
O � E

1� E

where O is the observed accuracy and E is the expected accuracy
under chance agreement (psych:::cohen.kappa, vcd:::Kappa, . . . )

For 2–class models, Receiver Operating Characteristic (ROC)
curves can be used to characterize model performance (more later)
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Estimating Performance For Classification

A“ confusion matrix” is a cross–tabulation of the observed and predicted
classes

R functions for confusion matrices are in the e1071 package (the
classAgreement function), the caret package (confusionMatrix), the
mda (confusion) and others.

ROC curve functions are found in the ROCR package (performance), the
verification package (roc.area), the pROC package (roc) and others.

We’ll use the confusionMatrix function and the pROC package later in
this class.

Max Kuhn (Pfizer) Predictive Modeling 24 / 126



Estimating Performance For Classification

For 2–class classification models we might also be interested in:

Sensitivity: given that a result is truly an event, what is the
probability that the model will predict an event results?

Specificity: given that a result is truly not an event, what is the
probability that the model will predict a negative results?

(an“event” is really the event of interest)

These conditional probabilities are directly related to the false positive and
false negative rate of a method.

Unconditional probabilities (the positive–predictive values and
negative–predictive values) can be computed, but require an estimate of
what the overall event rate is in the population of interest (aka the
prevalence)
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Estimating Performance For Classification

For our example, let’s choose the event to be the poor segmentation
(PS):

Sensitivity =
# PS predicted to be PS

# true PS

Specificity =
# true WS to be WS

# true WS

The caret package has functions called sensitivity and specificity

Max Kuhn (Pfizer) Predictive Modeling 26 / 126



ROC Curve

With two classes the Receiver Operating Characteristic (ROC) curve can
be used to estimate performance using a combination of sensitivity and
specificity.

Given the probability of an event, many alternative cuto↵s can be
evaluated (instead of just a 50% cuto↵). For each cuto↵, we can calculate
the sensitivity and specificity.

The ROC curve plots the sensitivity (eg. true positive rate) by one minus
specificity (eg. the false positive rate).

The area under the ROC curve is a common metric of performance.
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Data Pre–Processing

Pre–Processing the Data

There are a wide variety of models in R. Some models have di↵erent
assumptions on the predictor data and may need to be pre–processed.

For example, methods that use the inverse of the predictor cross–product
matrix (i.e. (X 0X )�1) may require the elimination of collinear predictors.

Others may need the predictors to be centered and/or scaled, etc.

If any data processing is required, it is a good idea to base these
calculations on the training set, then apply them to any data set used for
model building or prediction.
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Pre–Processing the Data

Examples of of pre–processing operations:

centering and scaling

imputation of missing data

transformations of individual predictors (e.g. Box–Cox
transformations of the predictors)

transformations of the groups of predictors, such as the
I the“spatial–sign” transformation (i.e. x 0 = x/||x ||)
I feature extraction via PCA or ICA
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Centering, Scaling and Transforming

There are a few di↵erent functions for data processing in R:

scale in base R

ScaleAdv in pcaPP

stdize in pls

preProcess in caret

normalize in sparseLDA

The first three functions do simple centering and scaling. preProcess can
do a variety of techniques, so we’ll look at this in more detail.
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Centering and Scaling

The input is a matrix or data frame of predictor data. Once the values are
calculated, the predict method can be used to do the actual data
transformations.

First, estimate the standardization parameters:
> trainX <- training[, names(training) != "Class"]

> ## Methods are "BoxCox", "YeoJohnson", center", "scale",

> ## "range", "knnImpute", "bagImpute", "pca", "ica" and

> ## "spatialSign"

> preProcValues <- preProcess(trainX, method = c("center", "scale"))

> preProcValues

Call:
preProcess.default(x = trainX, method = c("center", "scale"))

Created from 1009 samples and 58 variables
Pre-processing: centered, scaled

Apply them to the data sets:
> scaledTrain <- predict(preProcValues, trainX)
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Pre–Processing and Resampling

To get honest estimates of performance, all data transformations should
be included within the cross–validation loop.

The would be especially true for feature selection as well as pre–processing
techniques (e.g. imputation, PCA, etc)

One function considered later called train that can apply preProcess

within resampling loops.

Max Kuhn (Pfizer) Predictive Modeling 34 / 126



Over–Fitting and Resampling

Over–Fitting

Over–fitting occurs when a model inappropriately picks up on trends in the
training set that do not generalize to new samples.

When this occurs, assessments of the model based on the training set can
show good performance that does not reproduce in future samples.

Some models have specific“knobs” to control over-fitting

neighborhood size in nearest neighbor models is an example

the number if splits in a tree model

Often, poor choices for these parameters can result in over-fitting

For example, the next slide shows a data set with two predictors. We want
to be able to produce a line (i.e. decision boundary) that di↵erentiates two
classes of data.

Two model fits are shown; one over–fits the training data.
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The Data
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Two Model Fits
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Characterizing Over–Fitting Using the Training Set

One obvious way to detect over–fitting is to use a test set. However,
repeated“looks”at the test set can also lead to over–fitting

Resampling the training samples allows us to know when we are making
poor choices for the values of these parameters (the test set is not used).

Resampling methods try to“inject variation” in the system to approximate
the model’s performance on future samples.

We’ll walk through several types of resampling methods for training set
samples.
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K–Fold Cross–Validation

Here, we randomly split the data into K distinct blocks of roughly equal
size.

1 We leave out the first block of data and fit a model.

2 This model is used to predict the held-out block

3 We continue this process until we’ve predicted all K held–out blocks

The final performance is based on the hold-out predictions

K is usually taken to be 5 or 10 and leave one out cross–validation has
each sample as a block

Repeated K–fold CV creates multiple versions of the folds and
aggregates the results (I prefer this method)

caret:::createFolds, caret:::createMultiFolds
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K–Fold Cross–Validation
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Repeated Training/Test Splits

(aka leave–group–out cross–validation)

A random proportion of data (say 80%) are used to train a model while
the remainder is used for prediction. This process is repeated many times
and the average performance is used.

These splits can also be generated using stratified sampling.

With many iterations (20 to 100), this procedure has smaller variance than
K–fold CV, but is likely to be biased.

caret:::createDataPartition
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Repeated Training/Test Splits
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Bootstrapping

Bootstrapping takes a random sample with replacement. The random
sample is the same size as the original data set.

Samples may be selected more than once and each sample has a 63.2%
chance of showing up at least once.

Some samples won’t be selected and these samples will be used to predict
performance.

The process is repeated multiple times (say 30–100).

This procedure also has low variance but non–zero bias when compared to
K–fold CV.

sample, caret:::createResample
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Bootstrapping
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The Big Picture

We think that resampling will give us honest estimates of future
performance, but there is still the issue of which model to select.

One algorithm to select models:

Define sets of model parameter values to evaluate;
for each parameter set do

for each resampling iteration do
Hold–out specific samples ;
Fit the model on the remainder;
Predict the hold–out samples;

end
Calculate the average performance across hold–out predictions

end
Determine the optimal parameter set;
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K–Nearest Neighbors Classification
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The Big Picture – KNN Example

Using k–nearest neighbors as an example:

Randomly put samples into 10 distinct groups;
for i = 1 . . . 30 do

Create a bootstrap sample;
Hold–out data not in sample;
for k = 1, 3, . . . 29 do

Fit the model on the boostrapped sample;
Predict the i th holdout and save results;

end
Calculate the average accuracy across the 30 hold–out sets of
predictions

end
Determine k based on the highest cross–validated accuracy;
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The Big Picture – KNN Example
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A General Strategy

There is usually a inverse relationship between model flexibility/power and
interpretability.

In the best case, we would like a parsimonious and interpretable model
that has excellent performance.

Unfortunately, that is not usually realistic.

One strategy:

1 start with the most powerful black–box type models

2 get a sense of the best possible performance

3 then fit more simplistic/understandable models

4 evaluate the performance cost of using a simpler model
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Training and Tuning Tree Models

Classification Trees

A classification tree searches through each predictor to find a value of a
single variable that best splits the data into two groups.

typically, the best split minimizes impurity of the outcome in the
resulting data subsets.

For the two resulting groups, the process is repeated until a hierarchical
structure (a tree) is created.

in e↵ect, trees partition the X space into rectangular sections that
assign a single value to samples within the rectangle.
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An Example First Split
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The Next Round of Splitting
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An Example
There are many tree–based packages in R. The main package for fitting
single trees are rpart, RWeka, evtree, C50 and party. rpart fits the
classical “CART”models of Breiman et al (1984).

To obtain a shallow tree with rpart:
> library(rpart)

> rpart1 <- rpart(Class ~ ., data = training,

+ control = rpart.control(maxdepth = 2))

> rpart1

n= 1009

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1009 373 PS (0.63032706 0.36967294)
2) TotalIntenCh2< 45324.5 454 34 PS (0.92511013 0.07488987)
4) IntenCoocASMCh3< 0.6021832 447 27 PS (0.93959732 0.06040268) *
5) IntenCoocASMCh3>=0.6021832 7 0 WS (0.00000000 1.00000000) *

3) TotalIntenCh2>=45324.5 555 216 WS (0.38918919 0.61081081)
6) FiberWidthCh1< 9.673245 154 47 PS (0.69480519 0.30519481) *
7) FiberWidthCh1>=9.673245 401 109 WS (0.27182045 0.72817955) *
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Visualizing the Tree

The rpart package has functions plot.rpart and text.rpart to
visualize the final tree.

The partykit package (at r-forge.r-project.org) also has enhanced
plotting functions for recursive partitioning. We can convert the rpart
object to a new class called party and plot it to see more in the terminal
nodes:

> rpart1a <- as.party(rpart1)

> plot(rpart1a)
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A Shallow rpart Tree Using the party Package
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Tree Fitting Process

Splitting would continue until some criterion for stopping is met, such as
the minimum number of observations in a node

The largest possible tree may over-fit and“pruning” is the process of
iteratively removing terminal nodes and watching the changes in
resampling performance (usually 10–fold CV)

There are many possible pruning paths: how many possible trees are there
with 6 terminal nodes?

Trees can be indexed by their maximum depth and the classical CART
methodology uses a cost-complexity parameter (Cp) to determine best
tree depth
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The Final Tree

Previously, we told rpart to use a maximum of two splits.

By default, rpart will conduct as many splits as possible, then use 10–fold
cross–validation to prune the tree.

Specifically, the“one SE” rule is used: estimate the standard error of
performance for each tree size then choose the simplest tree within one
standard error of the absolute best tree size.

> rpartFull <- rpart(Class ~ ., data = training)
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Tree Growing and Pruning

Full Tree
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The Final Tree
> rpartFull

n= 1009

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1009 373 PS (0.63032706 0.36967294)
2) TotalIntenCh2< 45324.5 454 34 PS (0.92511013 0.07488987)
4) IntenCoocASMCh3< 0.6021832 447 27 PS (0.93959732 0.06040268) *
5) IntenCoocASMCh3>=0.6021832 7 0 WS (0.00000000 1.00000000) *

3) TotalIntenCh2>=45324.5 555 216 WS (0.38918919 0.61081081)
6) FiberWidthCh1< 9.673245 154 47 PS (0.69480519 0.30519481)
12) AvgIntenCh1< 323.9243 139 33 PS (0.76258993 0.23741007) *
13) AvgIntenCh1>=323.9243 15 1 WS (0.06666667 0.93333333) *
7) FiberWidthCh1>=9.673245 401 109 WS (0.27182045 0.72817955)
14) ConvexHullAreaRatioCh1>=1.173618 63 26 PS (0.58730159 0.41269841)
28) VarIntenCh4>=172.0165 19 2 PS (0.89473684 0.10526316) *
29) VarIntenCh4< 172.0165 44 20 WS (0.45454545 0.54545455)
58) KurtIntenCh3< 4.05017 24 8 PS (0.66666667 0.33333333) *
59) KurtIntenCh3>=4.05017 20 4 WS (0.20000000 0.80000000) *

15) ConvexHullAreaRatioCh1< 1.173618 338 72 WS (0.21301775 0.78698225)
30) ShapeP2ACh1>=1.304052 179 53 WS (0.29608939 0.70391061)
60) AvgIntenCh4>=375.205 17 2 PS (0.88235294 0.11764706) *
61) AvgIntenCh4< 375.205 162 38 WS (0.23456790 0.76543210)
122) LengthCh1< 20.92921 10 3 PS (0.70000000 0.30000000) *
123) LengthCh1>=20.92921 152 31 WS (0.20394737 0.79605263)
246) NeighborMinDistCh1< 22.02943 32 14 WS (0.43750000 0.56250000)
492) AvgIntenCh1< 110.6452 16 3 PS (0.81250000 0.18750000) *
493) AvgIntenCh1>=110.6452 16 1 WS (0.06250000 0.93750000) *

247) NeighborMinDistCh1>=22.02943 120 17 WS (0.14166667 0.85833333) *
31) ShapeP2ACh1< 1.304052 159 19 WS (0.11949686 0.88050314) *
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The Final rpart Tree
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Test Set Results

> rpartPred <- predict(rpartFull, testing, type = "class")

> confusionMatrix(rpartPred, testing$Class) # requires 2 factor vectors

Confusion Matrix and Statistics

Reference
Prediction PS WS

PS 561 108
WS 103 238

Accuracy : 0.7911
95% CI : (0.7647, 0.8158)

No Information Rate : 0.6574
P-Value [Acc > NIR] : <2e-16

Kappa : 0.5346
Mcnemars Test P-Value : 0.783

Sensitivity : 0.8449
Specificity : 0.6879

Pos Pred Value : 0.8386
Neg Pred Value : 0.6979

Prevalence : 0.6574
Detection Rate : 0.5554

Detection Prevalence : 0.6624

Positive Class : PS
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Manually Tuning the Model

CART conducts an internal 10-fold CV to tune the model to be within one
SE of the absolute minimum.

We might want to tune the model ourselves for several reasons:

10-Fold CV can be very noisy for small to moderate sample sizes

We might want to risk some over–fitting in exchange for higher
performance

Using a performance metric other than error may be preferable,
especially with severe class imbalances.

We can manually make tradeo↵s between sensitivity and specificity
for di↵erent values of Cp

To this end, we will look at the train funciton in the caret package.
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Tuning the Model

There are a few functions that can be used for this purpose in R.

the errorest function in the ipred package can be used to resample
a single model (e.g. a gbm model with a specific number of iterations
and tree depth)

the e1071 package has a function (tune) for five models that will
conduct resampling over a grid of tuning values.

caret has a similar function called train for over 147 models.
Di↵erent resampling methods are available as are custom performance
metrics and facilities for parallel processing.
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The train Function

The basic syntax for the function is:

> train(formula, data, method)

Looking at ?train, using method = "rpart" can be used to tune a tree
over Cp , so we can use:

train(Class ~ ., data = training, method = "rpart")

We’ll add a bit of customization too.
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The train Function

By default, the function will tune over 3 values of the tuning parameter
(Cp for this model).

For rpart, the train function determines the distinct number of values of
Cp for the data.

The tuneLength function can be used to evaluate a broader set of models:

train(Class ~ ., data = training, method = "rpart", tuneLength = 30)
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The train Function

The default resampling scheme is the bootstrap. Let’s use repeated
10–fold cross–validation instead.

To do this, there is a control function that handles some of the optional
arguments.

To use three repeats of 10–fold cross–validation, we would use

cvCtrl <- trainControl(method = "repeatedcv", repeats = 3)
train(Class ~ ., data = training, method = "rpart",

tuneLength = 30,
trControl = cvCtrl)
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The train Function

Also, the default CART algorithm uses overall accuracy and the one
standard–error rule to prune the tree.

We might want to choose the tree complexity based on the largest
absolute area under the ROC curve.

A custom performance function can be passed to train. The package has
one that calculates the ROC curve, sensitivity and specificity:

> ## Make some random example data to show usage of twoClassSummary()

> fakeData <- data.frame(pred = testing$Class,

+ obs = sample(testing$Class),

+ ## Requires a column for class probabilities

+ ## named after the first level

+ PS = runif(nrow(testing)))

> twoClassSummary(fakeData, lev = levels(fakeData$obs))

ROC Sens Spec
0.5220550 0.6822289 0.3901734
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The train Function

We can pass the twoClassSummary function in through trainControl.

However, to calculate the ROC curve, we need the model to predict the
class probabilities. The classProbs option will also do this:

Finally, we tell the function to optimize the area under the ROC curve
using the metric argument:

cvCtrl <- trainControl(method = "repeatedcv", repeats = 3,
summaryFunction = twoClassSummary,
classProbs = TRUE)

set.seed(1)
rpartTune <- train(Class ~ ., data = training, method = "rpart",

tuneLength = 30,
metric = "ROC",
trControl = cvCtrl)
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train Results

> rpartTune

1009 samples
58 predictors
2 classes: PS, WS

No pre-processing
Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 909, 907, 908, 908, 908, 909, ...

Resampling results across tuning parameters:

cp ROC Sens Spec ROC SD Sens SD
0 0.854 0.831 0.685 0.0435 0.0494
0.0114 0.842 0.845 0.732 0.0513 0.0413
0.0227 0.843 0.839 0.756 0.0516 0.0422
0.0341 0.825 0.82 0.752 0.0468 0.0377
0.0455 0.819 0.83 0.699 0.0431 0.0424

: : : : : :

0.273 0.772 0.65 0.893 0.0399 0.0565
0.284 0.772 0.65 0.893 0.0399 0.0565
0.296 0.724 0.712 0.736 0.109 0.142
0.307 0.724 0.712 0.736 0.109 0.142
0.318 0.686 0.758 0.613 0.128 0.166
0.33 0.635 0.812 0.458 0.132 0.183

ROC was used to select the optimal model using the largest value.
The final value used for the model was cp = 0.
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Working With the train Object

There are a few methods of interest:

plot.train can be used to plot the resampling profiles across the
di↵erent models

print.train shows a textual description of the results

predict.train can be used to predict new samples

there are a few others that we’ll mention shortly.

Additionally, the final model fit (i.e. the model with the best resampling
results) is in a sub–object called finalModel.

So in our example, rpartTune is of class train and the object
rpartTune$finalModel is of class rpart.

Let’s look at what the plot method does.
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Resampled ROC Profile
plot(rpartTune, scales = list(x = list(log = 10)))
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Predicting New Samples

There are at least two ways to get predictions from a train object:

predict(rpartTune$finalModel, newdata, type = "class")

predict(rpartTune, newdata)

The first method uses predict.rpart. If there is any extra or
non–standard syntax, this must also be specified.

predict.train does the same thing, but takes care of any minutia that is
specific to the predict method in question.
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Test Set Results

> rpartPred2 <- predict(rpartTune, testing)

> confusionMatrix(rpartPred2, testing$Class)

Confusion Matrix and Statistics

Reference
Prediction PS WS

PS 554 104
WS 110 242

Accuracy : 0.7881
95% CI : (0.7616, 0.8129)

No Information Rate : 0.6574
P-Value [Acc > NIR] : <2e-16

Kappa : 0.5316
Mcnemars Test P-Value : 0.7325

Sensitivity : 0.8343
Specificity : 0.6994

Pos Pred Value : 0.8419
Neg Pred Value : 0.6875

Prevalence : 0.6574
Detection Rate : 0.5485

Detection Prevalence : 0.6515

Positive Class : PS
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Predicting Class Probabilities

predict.train has an argument type that can be used to get predicted
class probabilities for di↵erent models:

> rpartProbs <- predict(rpartTune, testing, type = "prob")

> head(rpartProbs)

PS WS
1 0.97681159 0.02318841
5 0.97681159 0.02318841
6 0.06034483 0.93965517
7 0.06034483 0.93965517
8 0.97681159 0.02318841
9 0.97681159 0.02318841
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Creating the ROC Curve

The pROC package can be used to create ROC curves.

The function roc is used to capture the data and compute the ROC curve.
The functions plot.roc and auc.roc generate plot and area under the
curve, respectively.

> library(pROC)

> rpartROC <- roc(testing$Class, rpartProbs[, "PS"], levels = rev(testProbs$Class))

> plot(rpartROC, type = "S", print.thres = .5)

> rpartROC

Call:
roc.default(response = testing$Class, predictor = rpartProbs[, "PS"], levels = rev(testProbs$Class))

Data: rpartProbs[, "PS"] in 346 controls (testing$Class 2) < 664 cases (testing$Class 1).
Area under the curve: 0.8436
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Classification Tree ROC Curve
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Pros and Cons of Single Trees

Trees can be computed very quickly and have simple interpretations.

Also, they have built-in feature selection; if a predictor was not used in any
split, the model is completely independent of that data.

Unfortunately, trees do not usually have optimal performance when
compared to other methods.

Also, small changes in the data can drastically a↵ect the structure of a
tree.

This last point has been exploited to improve the performance of trees via
ensemble methods where many trees are fit and predictions are aggregated
across the trees. Examples are bagging, boosting and random forests.
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Boosting Algorithms
A method to“boost”weak learning algorithms (e.g. single trees) into
strong learning algorithms.

Boosted trees try to improve the model fit over di↵erent trees by
considering past fits (not unlike iteratively reweighted least squares)

The basic tree boosting algorithm:

Initialize equal weights per sample;
for j = 1 . . .M iterations do

Fit a classification tree using sample weights (denote the model
equation as fj (x ));
forall the misclassified samples do

increase sample weight
end
Save a“stage–weight” (�j ) based on the performance of the current
model;

end
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Boosted Trees (Original “ adaBoost”Algorithm)

In this formulation, the categorical response yi is coded as either {�1, 1}
and the model fj (x ) produces values of {�1, 1}.

The final prediction is obtained by first predicting using all M trees, then
weighting each prediction

f (x ) =
1

M

MX

j=1

�j fj (x )

where fj is the j th tree fit and �j is the stage weight for that tree.

The final class is determined by the sign of the model prediction.

In English: the final prediction is a weighted average of each tree’s
prediction. The weights are based on quality of each tree.
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Advances in Boosting

Although originally developed in the computer science literature, statistical
views on boosting made substantive improvements to the model.

For example:

di↵erent loss functions could be used, such as squared-error loss,
binomial likelihood etc

the rate at which the boosted tree adapts to new model fits could be
controlled and tweaked

sub–sampling the training set within each boosting iteration could be
used to increase model performance

The most well known statistical boosting model is the stochastic gradient

boosting of Friedman (2002).

However, there are numerous approaches to boosting. Many use non–tree
models as the base learner.
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Boosting Packages in R

Boosting functions for trees in R:

gbm in the gbm package

ada in ada

blackboost in mboost

C50 in C50

There are also packages for boosting other models (e.g. the mboost
package)

The CRAN Machine Learning Task View has a more complete list:

http://cran.r-project.org/web/views/MachineLearning.html
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Boosting via C5.0

C5.0 is an evolution of the C4.5 of Quinlan (1993). Compared to CART,
some of the di↵erences are:

A di↵erent impurity measure is used (entropy)

Tree pruning is done using pessimistic pruning

Splits on categorical predictors are handled very di↵erently

While the stochastic gradient boosting machines diverged from the original
adaboost algorithm, C5.0 does something similar to adaboost.

After the first tree is created, weights are determined and subsequent
iterations create weighted trees of about the same size as the first.

The final prediction is a simple average (i.e. no stage weights).
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C5.0 Weighting Scheme

Boosting Iteration

Sa
m

pl
e 

W
ei

gh
t

0

1

2

3

4

5

6

0 50 100 150 200

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

Correctly Classified Incorrectly Classified● ●

Max Kuhn (Pfizer) Predictive Modeling 85 / 126

C5.0 Syntax
This function has pretty standard syntax:

> C50(x = predictors, y = factorOutcome)

There are a few arguments:

trials: the number of boosting iterations

rules: a logical to indicate whether the tree(s) should be collapsed
into rules.

winnow: a logical that enacts a feature selection step prior to model
building.

costs: a matrix that places unbalanced costs of di↵erent types of
errors.

The prediction code is fairly standard

predict(object, trials, type)
## type is "class" or "prob"
## trials can be <= the original argument
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Tuning the C5.0 Model

Let’s use the basic tree model (i.e. no rules) with no additional feature
selection.

We will tune the model over the number of boosting iterations (1 . . . 100)

Note that we do no have to fit 100 models for each iteration of
resampling. We fit the 100 iteration model and derive the other 99
predictions using just the predict method.

We call this the“sub–model” trick. train uses it whenever possible
(including blackboost, C5.0, cubist, earth, enet, gamboost, gbm,
glmboost, glmnet, lars, lasso, logitBoost, pam, pcr, pls, rpart and
others)
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Using Di↵erent Performance Metrics

train was designed to make the syntax changes between models minimal.
Here, we will specify exactly what values the model should tune over.

A data frame is used with one row per tuning variable combination and
the parameters start with periods.

grid <- expand.grid(.model = "tree",

.trials = c(1:100),

.winnow = FALSE)

c5Tune <- train(trainX, training$Class,

method = "C5.0",

metric = "ROC",

tuneGrid = grid,

trControl = cvCtrl)
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Model Output
> c5Tune

1009 samples
58 predictors
2 classes: PS, WS

No pre-processing
Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 909, 907, 908, 908, 908, 909, ...

Resampling results across tuning parameters:

trials ROC Sens Spec ROC SD Sens SD Spec SD
1 0.829 0.82 0.694 0.0489 0.0515 0.0704
2 0.824 0.855 0.676 0.0456 0.05 0.0789
3 0.85 0.841 0.714 0.0406 0.0452 0.0775
4 0.858 0.852 0.706 0.0322 0.0469 0.069

: : : : : : :

95 0.9 0.859 0.764 0.0335 0.0391 0.0606
96 0.9 0.859 0.763 0.0331 0.0397 0.0629
97 0.9 0.859 0.76 0.0336 0.0387 0.0652
98 0.9 0.857 0.761 0.0334 0.0397 0.0662
99 0.9 0.858 0.762 0.0334 0.0393 0.066
100 0.9 0.859 0.764 0.0331 0.0393 0.069

Tuning parameter model was held constant at a value of tree

Tuning parameter winnow was held constant at a value of 0
ROC was used to select the optimal model using the largest value.
The final values used for the model were model = tree, trials = 97 and winnow
= FALSE.

Max Kuhn (Pfizer) Predictive Modeling 89 / 126

Boosted Tree Resampling Profile
plot(c5Tune)
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Test Set Results

> c5Pred <- predict(c5Tune, testing)

> confusionMatrix(c5Pred, testing$Class)

Confusion Matrix and Statistics

Reference
Prediction PS WS

PS 561 84
WS 103 262

Accuracy : 0.8149
95% CI : (0.7895, 0.8384)

No Information Rate : 0.6574
P-Value [Acc > NIR] : <2e-16

Kappa : 0.5943
Mcnemars Test P-Value : 0.1881

Sensitivity : 0.8449
Specificity : 0.7572

Pos Pred Value : 0.8698
Neg Pred Value : 0.7178

Prevalence : 0.6574
Detection Rate : 0.5554

Detection Prevalence : 0.6386

Positive Class : PS
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Test Set ROC Curve

> c5Probs <- predict(c5Tune, testing, type = "prob")

> head(c5Probs, 3)

PS WS
1 0.77879280 0.2212072
5 0.87112431 0.1288757
6 0.07587952 0.9241205

> library(pROC)

> c5ROC <- roc(predictor = c5Probs$PS,

+ response = testing$Class,

+ levels = rev(levels(testing$Class)))

> c5ROC

Call:
roc.default(response = testing$Class, predictor = c5Probs$PS, levels = rev(levels(testing$Class)))

Data: c5Probs$PS in 346 controls (testing$Class WS) < 664 cases (testing$Class PS).
Area under the curve: 0.8909

> # plot(rpartROC, type = "S")

> # plot(c5ROC, add = TRUE, col = "#9E0142")
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Test Set ROC Curves
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Test Set Probabilities
> histogram(~c5Probs$PS|testing$Class, xlab = "Probability of Poor Segmentation")
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Support Vector Machines (SVM)

This is a class of powerful and very flexible models.

SVMs for classification use a completely di↵erent objective function called
the margin.

Suppose a hypothetical situation: a dataset of two predictors and we are
trying to predict the correct class (two possible classes).

Let’s further suppose that these two predictors completely separate the
classes
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Support Vector Machines
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Support Vector Machines (SVM)

There are an infinite number of straight lines that we can use to separate
these two groups. Some must be better than others...

The margin is a defined by equally spaced boundaries on each side of the
line.

To maximize the margin, we try to make it as large as possible without
capturing any samples.

As the margin increases, the solution becomes more robust.

SVMs determine the slope and intercept of the line which maximizes the
margin.
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Maximizing the Margin
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SVM Prediction Function

Suppose our two classes are coded as –1 or 1.

The SVM model estimates n parameters (↵1 . . .↵n) for the model.
Regularization is used to avoid saturated models (more on that in a
minute).

For a new point u, the model predicts:

f (u) = �0 +
nX

i=1

↵iyix
0
iu

The decision rule would predict class #1 if f (u) > 0 and class #2
otherwise.

Data points that are support vectors have ↵i 6= 0, so the prediction
equation is only a↵ected by the support vectors.

Max Kuhn (Pfizer) Predictive Modeling 99 / 126

Support Vector Machines (SVM)

When the classes overlap, points are allowed within the margin. The
number of points is controlled by a cost parameter.

The points that are within the margin (or on it’s boundary) are the
support vectors

Consequences of the fact that the prediction function only uses the
support vectors:

the prediction equation is more compact and e�cient

the model may be more robust to outliers
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The Kernel Trick

You may have noticed that the prediction function was a function of an
inner product between two samples vectors (x 0

iu). It turns out that this
opens up some new possibilities.

Nonlinear class boundaries can be computed using the“kernel trick”.

The predictor space can be expanded by adding nonlinear functions in x .
These functions, which must satisfy specific mathematical criteria, include
common functions:

Polynomial : K (x , u) = (1 + x 0u)p

Radial basis function : K (x , u) = exp


��

2
(x � u)2

�

We don’t need to store the extra dimensions; these functions can be
computed quickly.
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SVM Regularization

As previously discussed, SVMs also include a regularization parameter that
controls how much the regression line can adapt to the data smaller values
result in more linear (i.e. flat) surfaces

This parameter is generally referred to as“Cost”

If the cost parameter is large, there is a significant penalty for having
samples within the margin ) the boundary becomes very flexible.

Tuning the cost parameter, as well as any kernel parameters, becomes very
important as these models have the ability to greatly over–fit the training
data.

(animation)
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SVM Models in R

There are several packages that include SVM models:

e1071 has the function svm for classification (2+ classes) and
regression with 4 kernel functions

klaR has svmlight which is an interface to the C library of the same
name. It can do classification and regression with 4 kernel functions
(or user defined functions)

svmpath has an e�cient function for computing 2–class models
(including 2 kernel functions)

kernlab contains ksvm for classification and regression with 9
built–in kernel functions. Additional kernel function classes can be
written. Also, ksvm can be used for text mining with the tm package.

Personally, I prefer kernlab because it is the most general and contains
other kernel method functions (e1071 is probably the most popular).
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Tuning SVM Models

We need to come up with reasonable choices for the cost parameter and
any other parameters associated with the kernel, such as

polynomial degree for the polynomial kernel

�, the scale parameter for radial basis functions (RBF)

We’ll focus on RBF kernel models here, so we have two tuning parameters.

However, there is a potential shortcut for RBF kernels. Reasonable values
of � can be derived from elements of the kernel matrix of the training set.

The manual for the sigest function in kernlab has“The estimation [for
�] is based upon the 0.1 and 0.9 quantile of |x � x 0|2.”

Anecdotally, we have found that the mid–point between these two
numbers can provide a good estimate for this tuning parameter. This
leaves only the cost function for tuning.
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SVM Example

We can tune the SVM model over the cost parameter.

set.seed(1)
svmTune <- train(x = trainX,

y = training$Class,
method = "svmRadial",
# The default grid of cost parameters go from 2^-2,
# 0.5 to 1,
# Well fit 9 values in that sequence via the tuneLength
# argument.
tuneLength = 9,
## Also add options from preProcess here too
preProc = c("center", "scale"),
metric = "ROC",
trControl = cvCtrl)
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SVM Example

> svmTune

1009 samples
58 predictors
2 classes: PS, WS

Pre-processing: centered, scaled
Resampling: Cross-Validation (10 fold, repeated 3 times)

Summary of sample sizes: 909, 907, 908, 908, 908, 909, ...

Resampling results across tuning parameters:

C ROC Sens Spec ROC SD Sens SD Spec SD
0.25 0.877 0.876 0.665 0.0355 0.0421 0.076
0.5 0.882 0.867 0.721 0.0365 0.0407 0.078
1 0.883 0.861 0.741 0.035 0.0421 0.073
2 0.876 0.851 0.734 0.034 0.0349 0.0733
4 0.864 0.847 0.72 0.0347 0.0328 0.0679
8 0.852 0.84 0.718 0.0383 0.0475 0.0771
16 0.839 0.828 0.703 0.0434 0.0484 0.0855
32 0.826 0.816 0.693 0.0441 0.0498 0.0966
64 0.824 0.814 0.687 0.0445 0.05 0.0977

Tuning parameter sigma was held constant at a value of 0.0208
ROC was used to select the optimal model using the largest value.
The final values used for the model were C = 1 and sigma = 0.0208.
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SVM Example

> svmTune$finalModel

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 1

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.0207957172685357

Number of Support Vectors : 566

Objective Function Value : -374.7523
Training error : 0.108028
Probability model included.

566 training data points (out of 1009 samples) were used as support
vectors.
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SVM Accuracy Profile
plot(svmTune, metric = "ROC", scales = list(x = list(log =

2)))
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Test Set Results

> svmPred <- predict(svmTune, testing[, names(testing) != "Class"])

> confusionMatrix(svmPred, testing$Class)

Confusion Matrix and Statistics

Reference
Prediction PS WS

PS 567 85
WS 97 261

Accuracy : 0.8198
95% CI : (0.7947, 0.843)

No Information Rate : 0.6574
P-Value [Acc > NIR] : <2e-16

Kappa : 0.6032
Mcnemars Test P-Value : 0.4149

Sensitivity : 0.8539
Specificity : 0.7543

Pos Pred Value : 0.8696
Neg Pred Value : 0.7291

Prevalence : 0.6574
Detection Rate : 0.5614

Detection Prevalence : 0.6455

Positive Class : PS
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Test Set ROC Curves
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Comparing Models

Comparing Models Using Resampling

Notice that, before each call to train, we set the random number seed.

That has the e↵ect of using the same resamping data sets for the boosted
tree and support vector machine.

E↵ectively, we have paired estimates for performance.

Hothorn et al (2005) and Eugster et al (2008) demonstrate techniques for
making inferential comparisons using resampling.
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Collecting Results With resamples

caret has a function and classes for collating resampling results from
objects of class train, rfe and sbf.

> cvValues <- resamples(list(CART = rpartTune, SVM = svmTune, C5.0 = c5Tune))

> summary(cvValues)

Call:
summary.resamples(object = cvValues)

Models: CART, SVM, C5.0
Number of resamples: 30

ROC
Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

CART 0.7323 0.8335 0.8484 0.8536 0.8765 0.9234 0
SVM 0.7698 0.8698 0.8847 0.8828 0.9112 0.9301 0
C5.0 0.8136 0.8889 0.9074 0.9004 0.9226 0.9485 0

Sens
Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

CART 0.6825 0.8125 0.8347 0.8312 0.8594 0.9219 0
SVM 0.7778 0.8314 0.8594 0.8611 0.8906 0.9524 0
C5.0 0.7619 0.8413 0.8594 0.8589 0.8854 0.9375 0

Spec
Min. 1st Qu. Median Mean 3rd Qu. Max. NAs

CART 0.5946 0.6316 0.6579 0.6846 0.7297 0.8421 0
SVM 0.5676 0.6888 0.7333 0.7408 0.7838 0.8919 0
C5.0 0.5676 0.7315 0.7600 0.7596 0.7881 0.9459 0
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Visualizing the Resamples

There are a number of lattice plot methods to display the results:
bwplot, dotplot, parallelplot, xyplot, splom.

For example:

> splom(cvValues, metric = "ROC")
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Visualizing the Resamples
xyplot(cvValues, metric = "ROC")
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Visualizing the Resamples
parallelplot(cvValues, metric = "ROC")

ROC

CART

SVM

C5.0

0.75 0.8 0.85 0.9 0.95

Max Kuhn (Pfizer) Predictive Modeling 116 / 126



Visualizing the Resamples
dotplot(cvValues, metric = "ROC")
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Comparing Models

We can also test to see if there are di↵erences between the models:

> rocDiffs <- diff(cvValues, metric = "ROC")

> summary(rocDiffs)

Call:
summary.diff.resamples(object = rocDiffs)

p-value adjustment: bonferroni
Upper diagonal: estimates of the difference
Lower diagonal: p-value for H0: difference = 0

ROC
CART SVM C5.0

CART -0.02920 -0.04688
SVM 8.310e-05 -0.01768
C5.0 4.389e-09 4.359e-05

There are lattice plot methods, such as dotplot.

Max Kuhn (Pfizer) Predictive Modeling 118 / 126



Visualizing the Di↵erences
dotplot(rocDiffs, metric = "ROC")
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Parallel Processing

Since we are fitting a lot of independent models over di↵erent tuning
parameters and sampled data sets, there is no reason to do these
sequentially.

R has many facilities for splitting computations up onto multiple cores or
machines

See Schmidberger et al (2009) for a recent review of these methods
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foreach and caret

To loop through the models and data sets, caret uses the foreach
package, which parallelizes for loops.

foreach has a number of parallel backends which allow various
technologies to be used in conjunction with the package.

On CRAN, these are the doSomething packages, such as doMC, doMPI,
doSMP and others.

For example, doMC uses the multicore package, which forks processes to
split computations (for unix and OS X only for now).
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foreach and caret

To use parallel processing in caret, no changes are needed when calling
train.

The parallel technology must be registered with foreach prior to calling
train.

For multicore

> library(doMC)

> registerDoMC(cores = 2)
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Training Times and Speedups
HPC job scheduling data from Kuhn and Johnson (2013) and the multicore package:

Workers

 
0.

2
0.

4
0.

6

LDA Training Time (min)

5 10 15

5
10

15
20

25
30

SVM Training Time (min)
10

0
20

0
30

0
40

0
50

0
60

0

5 10 15

RF Training Time (min)

2
4

6
8

Speed−Up

RF SVM LDA

Max Kuhn (Pfizer) Predictive Modeling 123 / 126

References

Breiman L, Friedman J, Olshen R, Stone C (1984). Classification and

Regression Trees. Chapman and Hall, New York.

Breiman, L (2001). “Statistical modeling: The two cultures.” Statistical
Science. 16(3), 199-231.

Eugster M, Hothorn T, Leisch F (2008). “Exploratory and Inferential
Analysis of Benchmark Experiments.” Ludwigs-Maximilians-Universitat

Munchen, Department of Statistics, Tech. Rep, 30.

Friedman J (2002). “Stochastic Gradient Boosting.” Computational

Statistics and Data Analysis, 38(4), 367-378.

Hastie T, Tibshirani R, Friedman J (2008). The Elements of Statistical

Learning: Data Mining, Inference and Prediction. Springer

Max Kuhn (Pfizer) Predictive Modeling 124 / 126



References

Hill A, LaPan P, Li Y, Haney S (2007). “Impact of Image Segmentation on
High-Content Screening Data Quality for SK-BR-3 Cells.” BMC

Bioinformatics, 8(1), 340.

Hothorn T, Leisch F, Zeileis A, Hornik K (2005). “The Design and
Analysis of Benchmark Experiments.” Journal of Computational and

Graphical Statistics, 14(3), 675-699.

Kuhn M, Johnson K (2013). Applied Predictive Modeling. Springer

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers.

Schmidberger M et al (2009). “State-of-the-art in Parallel Computing with
R.”Journal of Statistical Software 47.1.

Shmueli, G. (2010). “To explain or to predict?.” Statistical Science, 25(3),
289-310.

Max Kuhn (Pfizer) Predictive Modeling 125 / 126

Versions

R version 3.0.0 (2013-04-03), x86_64-apple-darwin10.8.0

Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-
8/en_US.UTF-8

Base packages: base, datasets, graphics, grDevices, grid, methods,
parallel, splines, stats, tools, utils

Other packages: AppliedPredictiveModeling 1.1-001, C50 0.1.0-15,
caret 5.16-06, class 7.3-7, cluster 1.14.4, codetools 0.2-8,
CORElearn 0.9.41, ctv 0.7-8, digest 0.6.3, doMC 1.3.0, e1071 1.6-1,
foreach 1.4.1, Hmisc 3.10-1, iterators 1.0.6, kernlab 0.9-18,
lattice 0.20-15, MASS 7.3-26, mlbench 2.1-1, partykit 0.1-5, plyr 1.8,
pROC 1.5.4, reshape2 1.2.2, rpart 4.1-1, survival 2.37-4,
svmpath 0.953, weaver 1.26.0

Loaded via a namespace (and not attached): compiler 3.0.0,
stringr 0.6.2
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