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What is the appropriate sample size when testing many
features simultaneously?

For example, measuring gene expression differences between groups
using microarray or RNAseq.

Appropriate means: When desired power is reached.

Power does not only depend on sample size but also on effect
size, sample variability and significance level.

Sample size determination either simulation or pilot-data based.



Single hypothesis vs multiple hypotheses testing
I not a single rejection region but many (multiple testing

problem)
I not a single effect size but distribution of effect sizes
I only a proportion will be rejected

average power: the proportion of correctly rejected observations
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Histograms of observed test statistics (A) and p-values
(B).
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Figure: Parametric null distribution (solid) and estimated alternative
distribution (dashed).



A mixture model for the probability distribution

m(t) = π0f0(t) + (1− π0)

∫
f1(t, θ;N)λ(θ)dθ. (1)

I m(t): observed test statistics (given)

I π0: indicates the proportion of non-differentially expressed
genes (unknown)

I f0(t): Normal or a Student’s t distribution (known)

I f1(t, θ;N): Normal with mean 6= 0 or non central t (known)

I λ(θ): density of effect sizes (unknown)

I N : represents the effective sample size; (1/nA + 1/nB)−1 (given)
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Estimation of the density of effect sizes (analytically)

f1(t, θ;N) normally distributed leads to the following
convolution ∫

Φ(t − θ
√
N)λ(θ)dθ (2)

which can be solved using a kernel deconvolution estimator1

λ(θ) =
1

2π

∫
e−isθ

√
N ψw (s)ψmn(s)

ψf0(s)
ds (3)

I numerical approximation to the real-part(very
time-consuming)

I using fft-function like implementation of the
density-function(really fast)

1Ferreira and Zwinderman, SAGMB, (2006).



Generalization to any kind of statistics

approximate the integral by a summation:

mn(ti ) = π0f0(ti ) + (1− π0)
M∑
j=1

f1(ti , θj)λ(θj)∆θ. (4)

express the density of effect sizes as a sum of B-splines:

mn(ti ) = π0f0(ti )+(1−π0)
M∑
j=1

f1(ti , θj)
K∑

k=1

αkbk(θj) ∆θ. (5)



Estimation of the density of effect sizes

the discretization transforms the integral equation to matrix
equation: y = Xβ

X ill-conditioned - no OLS-solution
need regularization e.g. minimize ||y − Xβ||2 + λW (β)

I constrained optimization2,3 (
∫
λ(θ)dθ = 1 and λ(θ) > 0).

I ridge regression

2Ruppert et al., Biometrics, (2007)
3van de Wiel and In Kim, Biometrics, (2007)



Estimation of the proportion of non-differentially expressed
genes
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Figure: Boxplots of π0 estimates with method of Langaas (JRSS, 2005),
Storey (JRSS, 2002) or as part of ridge regression estimation of λ(θ) on
250 simulated datasets.



Estimation of the average power using Bisection method
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Figure: Ferreira and Zwinderman, Int. J Biostat, (2006) showed that, u∗,

the solution to Ĝ1(u;N) =
∫
H1(u, θ;N)λ̂(θ)dθ = u α(1−π̂0)

π̂0(1−α) gives the

average power, where α is the desired False Discovery Rate.



Sample size determination

I given pilot-data

I calculate test statistics and p-values

I assume parametric form for the null and alternative

I estimate π0 and density of effect sizes, λ(θ)

I estimate the power of the pilot-data

I or predict power at sample sizes larger than the pilot-data

Ĝ1(u∗;N ′) =

∫
H1(u∗, θ;N ′)λ̂(θ)dθ = u∗

α(1− π̂0)

π̂0(1− α)
(6)



Nutrigenomics example

I PPAR-α activation in small intestine

I wild-type and PPAR-α knock out mice

I different PPAR-α agonist: high (Wy14,643), intermediate
(trilinolenin or C18:3) and low (fenofibrate) potency

I different exposure times (6 hours and 5 days)

I Affymetrix GeneChip Mouse 430 2.0 arrays

probe-sets group A group B experiment

1 16539 4 (wild-type) 4 (knock-out) high, 6 hours
2 16539 4 (wild-type) 5 (knock-out) intermediate, 6 hours
3 16539 5 (wild-type) 5 (knock-out) low, 6 hours
4 16539 4 (wild-type) 4 (knock-out) high, 5 days
5 16539 4 (wild-type) 4 (knock-out) low, 5 days

van Iterson et al. BMC Genomics (2009).



Nutrigenomics example: density of effect sizes

effect size
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Nutrigenomics example: power curves

sample size (per group)
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Conclusion/Future Plans

General method for sample size determination for high-dimensional
data with control of the FDR.

I likelihood ratio statistics (χ2 and non-central χ2) or
F-statistics

I nonparametric null and assume location-model for the
alternative
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SSPA:
http://bioconductor.org/packages/release/bioc/html/SSPA.html.

Other cran and BioConductor packages: OCplus, sizepower,

ssize, ssize.fdr


