facebook

Criss-Crossing the Org Chart Predicting Colleague Interactions with R

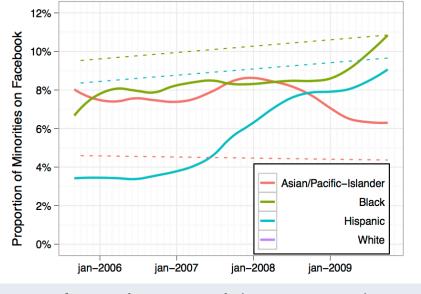
Eric Sun <esun@facebook.com> Facebook Data Science useR! 2010 Focus Session: Social Networks NIST, 7/21/2010

Introduction: How Facebook uses R

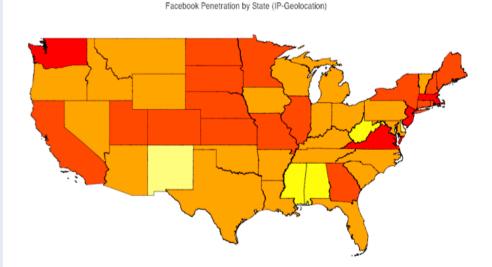
- Experimentation for large machine learning models
 - Picking models
 - Feature selection
- Small/medium one-off analyses
 - user engagement studies
 - analyses to improve internal processes

How Facebook uses R (cont.)

- Analysis and visualization for social networks research



from Chang, et al. (ICWSM 2009)



from Backstrom, et al. (WWW 2010)

Facebook Data Team: <u>http://www.facebook.com/data</u>

Predicting Colleague Interactions

Potential Applications

- Suggesting peer reviewers during performance review season
- Setting up optimally-constructed teams within a company
- Optimizing seating charts for maximum productivity
- Automatically filtering internal feeds of employee content (such as commit logs) to deliver personalized content to each employee
- Suggesting new colleague interactions (based on second-degree connections) that may be useful to one's work
- Giving managers more insight into their employees' interactions

Goals

- Attempt to predict the total # of colleague interactions in the next 4 weeks across all internal tools
- Provide an API for other engineers to use in their internal tools, and publish a daily dashboard to show each employee their current results

Pipeline Overview

Final Results

Daily cron job: R predictions -> RMySQL -> web page dashboard

User Score Alexander Strehl 1 9.3318008583172 2 Aaron Binbin Liao 8.1162385345038 3 Srinivas Narayanan 3.2938821239025 Jack Zhao 3.0129828038274 4 5 Austin Haugen 2.4928669082428

Eric Sun's Predicted Colleague Interactions

Predictors

- Direct communication metrics
 - # code reviews requested
 - # mailing list threads shared
 - # shared threads on internal task management tool
 - # shared threads on internal message boards
- Implicit interaction
 - # meetings co-attended
- Org chart dummy variables (manager, report, peer)

Feature Generation

- For each set, use Cartesian product to generate pairs of interactions
- All features weighted by 1 / (# participants 1)
- Example:
 - Alice, Bob, and Charlie attend a meeting.
 - Generate A->B, A->C, B->A, B->C, C->A, C->B with weight 0.5 for the 'meeting' variable, then aggregate across IDs and type

The Data

> crisscross.data <- read.csv('crisscross_training_data.csv')</pre>

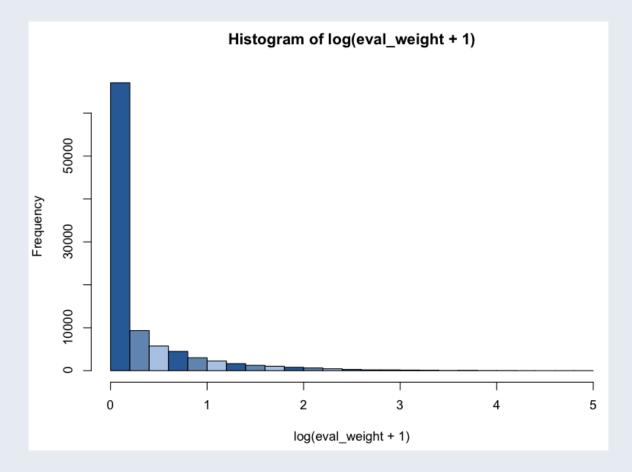
> nrow(crisscross.data) # low-weight observations filtered out

[1] 98802

> crisscross.data[sample(nrow(crisscross.data), 5),]

id1	id2	meeting	mailinglists	codereviews	tasks	messageboards	imageshare	manager	peer	report	eval_weight
<hidden></hidden>	<hidden></hidden>	0.0000	1	0	1.2834	0.000	0	0	0	0	0.0000
<hidden></hidden>	<hidden></hidden>	1.7833	0	0	0.0000	0.000	0	0	0	0	0.0000
<hidden></hidden>	<hidden></hidden>	0.0041	0	0	0.2000	0.000	0	0	0	0	0.0039
<hidden></hidden>	<hidden></hidden>	0.0000	0	0	0.0000	0.125	0	0	0	0	0.0000
<hidden></hidden>	<hidden></hidden>	0.0000	0	0	0.1250	0.000	0	0	0	0	1.8744

Long Tail of Interactions



Machine Learning

- All subsequent stats computed on a single Linux machine
- Dual-core 2 Mhz server, 16GB RAM
- Tried a variety of techniques: linear regression, random forests, boosted trees, etc.
- Used standard 2/3 1/3 split for training and test data

```
> nrow(full_data)
[1] 98802  # ~50 per employee
> nrow(test_data)
[1] 32934
> nrow(train_data)
[1] 65868
```

Linear Regression

> system.time(crisscross.lm <- $lm(eval_weight ~ ., data = train_data))$ user system elapsed 0.866 0.106 0.973 > summary(crisscross.lm) Call: $lm(formula = eval_weight \sim ., data = train_data)$ Residuals: Min 1Q Median 3Q Max -38.31223 -0.28494 -0.15137 0.02445 57.11911 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.071232 0.009224 -7.723 1.16e-14 *** 0.572376 0.024526 23.338 < 2e-16 *** meeting mailinglists 0.257495 0.009799 26.278 < 2e-16 *** codereviews 0.693076 0.005563 124.598 < 2e-16 *** 0.890425 0.004206 211.704 < 2e-16 *** tasks messageboards 0.767063 0.063873 12.009 < 2e-16 *** 0.810893 0.152074 5.332 9.73e-08 *** imageshare 0.488565 0.046915 10.414 < 2e-16 *** manager 0.255186 0.017801 14.336 < 2e-16 *** peer 0.483349 0.047139 10.254 < 2e-16 *** report ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.878 on 65858 degrees of freedom Multiple R-squared: 0.5451, Adjusted R-squared: 0.5451 F-statistic: 8770 on 9 and 65858 DF, p-value: < 2.2e-16

Random Forests

```
> require(randomForest)
Loading required package: randomForest
randomForest 4.5-30
Type rfNews() to see new features/changes/bug fixes.
> reg_x <- train_data[, -which(names(train_data) == 'eval_weight')]</pre>
> system.time(crisscross.rf <- randomForest(x = reg_x, y = train_data$eval_weight))</pre>
   user system elapsed
631.132 180.815 812.141
> summary(crisscross.rf)
                Length Class Mode
call
                    3 -none- call
type
                    1 -none- character
predicted
                65868 -none- numeric
mse
                  500 -none- numeric
                  500 -none- numeric
rsq
oob.times
               65868 -none- numeric
importance
                    9 -none- numeric
importanceSD
                    Ø -none- NULL
localImportance
                    0 -none- NULL
proximity
                    Ø -none- NULL
ntree
                    1 -none- numeric
                    1 -none- numeric
mtry
forest
                  11 -none- list
coefs
                    0 -none- NULL
               65868 -none- numeric
У
                    Ø -none- NULL
test
inbag
                    Ø -none- NULL
```

Boosted Trees

```
> require(gbm)
Loading required package: gbm
Loading required package: survival
Loading required package: splines
Loading required package: lattice
Loaded gbm 1.6-3
> system.time(crisscross.gbm <- gbm(eval_weight ~ ., data = train_data,</pre>
+ n.trees = 1000, cv.folds = 5, distribution = 'laplace',
+ interaction.depth = 2))
   user system elapsed
         0.594 270.810
270.108
> summary(crisscross.gbm)
                    rel.inf
            var
1
          tasks 84.97515128
2
        meeting 15.00431911
3
           peer 0.02052960
4
  mailinglists 0.00000000
    codereviews 0.00000000
5
6 messageboards 0.0000000
7
     imageshare 0.00000000
        manager 0.0000000
8
         report 0.0000000
9
```

Comparison of Techniques

Use held-out test set to evaluate results

	Linear Regression	Random Forests	Boosted Trees
Running Time (seconds)	0.973	812.141	270.81
Sum of Squared Errors	111,188.59	60,316.21	226,923.10
Mean Squared Error	3.74	2.03	7.64
Median Squared Error	0.09	0.05	0.01
Quantiles of Squared Errors:			
0%	0.00	0.00	0.00
20%	0.01	0.02	0.00
40%	0.04	0.03	0.00
60%	0.11	0.08	0.02
80%	0.55	0.35	0.28
100%	5,829.69	2,644.87	13,713.43

Summary & Future Work

- Remarkably simple, automatic pipeline delivers useful insight into organizational behavior
- Pipeline integrates R seamlessly with data stored in databases
- Many useful applications for internal tools
- To do: integrate into applications mentioned previously
- To do: explore visualization techniques with R graphics!
- These slides are posted at http://www.stanford.edu/~esun/

(c) 2000 Eacebook Inc. or its licensors. "Eacebook" is a registered trademark of Eacebook Inc. All rights reserved 1.0