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Overview 
  What is FMRI? 
  What kinds of analysis involved in FMRI data analyses 
  Programs in R for FMRI data analyses (of NIfTI/AFNI data) 

  Group analysis 
o  Mixed-effects meta analysis (MEMA): 3dMEMA!

o  Linear mixed-effects analysis (LME): 3dLME!
  Connectivity analysis 

o  Granger causality (vector autoregressive or VAR): 3dGC, 1dGC!
o  Intra-class correlation analysis (ICC): 3dICC and  3dICC_REML!
o  Structural equation modeling (SEM): 1dSEMr!

  Data-drive analysis: Independent component analysis (ICA): 3dICA!
  Kolmogorov-Smirnov test: 3dKS!

  Summary 



FMRI in Neuroimaging 
  Typical scanner: 3 Tesla = 60000 ✕ earth’s magnetic field 
  Measure changes in blood flow (hemodynamic response): BOLD signal 

  Indirect measure associated with neural activity during a task/condition 

  Started in early 1990s; Little invasion, no radiation, etc. 
  Interdisciplinary: physics, statistics, psychology, neuroanatomy, cognitive 

science, … 
  Mind reading? Not there yet, but analyses produce colored blobs denoting 

activation regions in the brain 



Data type in FMRI 
  Brain volume 

  Anatomical: 3D 
o  Typical spatial resolution: 1×1×1mm3; Dimensions: 256×256×128 ~ 8 

million voxels 

  Functional: 4D 
o  Typical spatial resolution: 2.75×2.75×3.0mm3; Dimensions: 80×80×33 ~  

20,000 voxels 
o  Typical temporal resolution: ~2s; Dimension: a few hundred time points 

  Number of subjects: 10-20 

  Surface 
  ROI 
  Behavioral 



Analysis types in FMRI 

  Individual subjects: time series regression 
  Voxel-wise or massively univariate model y = Xβ + ε, ε ~ N(0,σ2V) 
  σ2 and V vary spatially (across voxels) 
  REML + GLSQ 
  Runtime: 1 minute or more 

  Group analysis: summarizing across subjects 
  t-test, ANOVA, regression 
  Runtime: seconds 

  Connectivity analysis: search for or test network in the brain  
  Correlation analysis, structural equation modeling, Granger causality, 

dynamic causal modeling, etc. 

  Multivariate approach: data-driven 
  PCA/ICA, SVM, kernel methods, etc. 





Conventional group analysis in FMRI 
  Take regression coefficient β’s from each subject, and run t-

test, AN(C)OVA, LME 
  One-sample t-test: yi = α0+ δi , for ith subject; δi ~ N(0, τ2)  

  Three assumptions 
  Within/intra-subject variability (standard error, sampling error) is relatively 

small compared to cross/between/inter-subjects variability 
  Within/intra-subject variability roughly the same across subjects 
  Normal distribution for cross-subject variability (no outliers) 

  Violations prevalent, leading to suboptimal/invalid analysis 
  Common to see 40 - 100% variability due to within-subject variability 
  Non-uniform within/intra-subject variability across subjects 
  Not rare to see outliers 



Mixed-Effects Meta Analysis 
  For each effect estimate (β or linear combination of β’s) 

  How good is the β estimate? 
o  Reliability/precision/efficiency/certainty/confidence: standard 

error (SE) 
o  Smaller SE  more accurate estimate 

  t-statistic of the effect 
o  Signal-to-noise or effect vs. uncertainty: t = β/SE 
o  SE contained in t-statistic: SE = β/t 

  Trust those β’s with high reliability/precision (small SE) through 
weighting/compromise 
o  β estimate with high precision (lower SE) has more say in the final result 
o  β estimate with high uncertainty gets downgraded 

  One-sample model: yi = α0+δi + εi, for ith subject 
  δi ~ N(0, τ2), εi ~ N(0, σi2), σi2 known 



New group analysis program: 3dMEMA 
  Algorithms (MoM/REML + WLS) similar to R package metafor 

(Wolfgang Viechtbauer) with parallel computing using R package snow 
  Runtime: a few minutes or more with 4 CPUs 
  Analysis types 

  1-, 2-, paired-sample test 
  Covariates: age, IQ, behavioral data, between-subjects factors, etc. 

  Input: effect estimate + t from individual subjects 
  Output 

  Group level: group effect + Z/t 
  Cross-subject heterogeneity + χ2-test 
  Individual level: ICC + Z 

  Assessing outliers with 4 estimated quantities 
  Cross-subject variance (heterogeneity) τ2 at group level 
  χ2-test for H0: τ2=0 at group level 
  Intra-class correlation for each subject 
  Z-statistic for the residuals for each subject 

  Outliers modeled through a Laplace distribution of cross-subject variability 



Comparison: 3dMEMA vs. FLAME1+2 
  Frequentist (REML) vs. Bayesian (MCMC) 
  Runtime: a Mac OS  X 10.6.2 with 2×2.66 GHz dual-core 

Intel Xeon. Group analysis: 10 subjects, 218379 voxels. FSL 
ver. 4.1.4 



Linear Mixed-Effects Analysis 

  Yi = Xiβ +Zibi+εi, bi~ Nq(0, ψ), εi ~ Nni
(0, σ2Λi), q=1 

  Parameters: β, ψ, and σ2Λi 

  Fixed/mean/systematic effects in population Xiβ 
  Random effects Zibi  

  Across-subjects variability: deviation of each subject from mean effects Xiβ 

  Random effect εi 
  Within-subject variability (across multiple effects) 



Linear Mixed-Effects Analysis: 3dLME 

  Use function lme() in R package nlme (Pinheiro et al.) 
  Parallel computing using R package snow (Tierney et al.) 
  Contrasts through R package contrast (Kuhn et al.) 
  Runtime: a few minutes or more with 4 CPUs 
  3dLME is more flexible than conventional approach 

  Popular ANOVA, paired-, one- and two-sample t-test: special cases of LME 
o  ANOVA: compound symmetry in ψ 

  Capable to model various structures in ψ and σ2Λi 

  Much easier to deal with missing data and covariates 
  Modeling subtle HRF shape through multiple basis functions 

o  Zero intercept with H0: β1 = β2 = … = βk = 0 (k = # time points in HRF) 



Granger Causality or VAR 
  Granger causality: A Granger causes B if 

  time series at A provides statistically significant information about time 
series at B at some time delays (order) 

  2 ROI time series, y1(t) and y2(t), with a VAR(1) model 

  Matrix form: Y(t) = α+AY(t-1)+ε(t), where 

  n ROI time series, y1(t),…, yn(t), with VAR(p) model 
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GC in AFNI: 3dGC and 1dGC  

  Exploratory approach: ROI search with 3dGC!
  Not a solid approach; can explore possible ROIs in a network 
  Bivariate model: Seed vs. rest of brain 
  3 paths: seed to target, target to seed, and self-effect 
  Use R packages vars (Bernhard Pfaff) and snow (Tierney et al.) 

  Path strength significance testing in a network: 1dGC 
  Assume all ROIs are known in the network 
  Multivariate model with pre-selected ROIs 
  Use R package vars for VAR modeling (Bernhard Pfaff) 
  Use R package network for plotting (Butts et al.) 
  Preserve path sign (+ or -), in addition to its direction, from 

individual subjects all the way to group level analysis  
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Intra-Class Correlation (ICC) 

  Classical definition 
  Variability of a random variable relative to total variance 
  ICC varieties in Shrout and Fleiss (1979), Psychological Bulletin, Vol. 86, 

No.2, 420-428 
o  Based on mean squares of variance in ANOVA framework 
o  Problem: not rare to have negative ICC values, and difficult to 

interpret 
  Applied to FMRI data 

o  Reliability of scanning sessions/sites 

  Extended definition 
  Linear mixed-effects model 



3dICC and 3dICC_REML 

  3dICC 
  Use function lm() in R 
  Parallel computing using R package snow (Tierney et al.) 
  2-way and 3-way random-effects ANOVA model 
  May get negative ICC values 

  3dICC_REML 
  Use function lmer() in R package lme4 (Bates and Maechler) 
  No negative ICC values 
  Missing data allowed 
  No limit on # random variables 



Miscellaneous Tools 

  SEM or path analysis, analysis of covariance: 1dSEMr 
  Causal model for a network of ROIs 
  Use R package sem (John Fox) 

  Independent component analysis: 1dICA 
  Use R package fastICA (Marchini et al.) 
  Spatial ICA 

  Kolmogorov-Smirnov test: 3dKS 
  Use R package snow (Luke Tierney et al.) 



Summary 
  Statistical analysis programs in R for FMRI data analysis of 

NIfTI/AFNI datasets 
  Mixed-effects meta analysis (MEMA): 3dMEMA 
  Linear mixed-effects analysis (LME): 3dLME 
  Granger causality (vector autoregressive or VAR): 3dGC, 1dGC 
  Intra-class correlation analysis (ICC): 3dICC and 3dICC_REML 
  Structural equation modeling (SEM): 1dSEMr 
  Independent component analysis (ICA): 3dICA 
  Kolmogorov-Smirnov test: 3dKS 

  All programs available for download with AFNI, and at 
     http://afni.nimh.nih.gov/sscc/gangc 
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