Bayesian Approach to Specification of Design Space

Paul van Eikeren and Corey Dow-Hygelund userR! 2009 (July 8-10, 2009)

2

Quality by Design: Pharmaceutical Quality Vision

©2009 Blue Reference, Inc. All rights reserved.

Pharmaceutical Quality Vision

Develop a harmonized pharmaceutical quality system applicable across the lifecycle of the product emphasizing an integrated approach to quality risk management and science.

inference

Pharmaceutical Development

Guidance for Industry

Q8(R1) Pharmaceutical Development

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER)

> June 2009 ICH

Revision 1

QbD Pharmaceutical Development

infere

from Blue Reference

- Quality Target Product-Profile
- Critical Quality Attributes (CQA)
- Risk Assessment: link to Product CQA
- Design Space

What is Design Space

- "The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality."
- "Working within the design space is not considered as a change."
- Movement out of the design space is considered to be a change and would normally initiate a regulatory postapproval change process."
- "Design space is proposed by the applicant and is subject to regulatory assessment and approval."

Quality by Design Workflow

inference

Elements of Design Space

- Risk based approach to assurance of quality
- Critical to quality attributes (CQA) are multivariate
- Quantitative model links input attributes and process parameters to CQAs
- Model quantifies risk of not meeting CQAs

inference

Q8(R1) Example Design Space

Q1. How do we enable a risk-based approach to design space?Q2. How do we best construct the design space?Q3. How do we assess the reliability (assurance) of the design space?

inference

Risk-based approach to Design Space

Design Space Strategy

- Multivariate Strategy:
 - multidimensional combination and interaction of material and process variables linked to responses
 - responses comprised of drug product critical-to-quality attributes (CQA)
 - drug products involve a multitude of specifications (response factors)
- Overcome Limits of Conventional Design Space:
 - model: predictive response surface
 - model parameters: static variables
 - multiple responses: overlap of mean-response surfaces
 - Apply Bayesian Design Space:
 - model: posterior predictive probability function
 - model parameters: random variables
 - multiple responses: multivariate joint probability function

Issue with Conventional Design Space from Blue Reference

J. Lepore and J. Spavins, "PQLI Design Space," J. Pharmaceutical Innovation (2008) 3:79-87

Why Multivariate & Bayesian?

- Multivariate because
 - Quality entails multiple responses (CQA defined by specifications)
 - Multiple responses are not independent
 - Correlation between responses can have a big effect on probability of meeting all specifications
- Bayesian because conventional
 - fails to account for uncertainty in model parameters
 - fails to account for correlation structure in data
 - fails to provide a metric for "assurance of quality"
 - fails to enable use of prior information
 - fails to enable adaptive experimental design

Illustrative Example: Process for Coating Polymer

©2009 Blue Reference, Inc. All rights reserved.

Multivariate Chemical Process from Blue Refere

- Chemical Process
 - Production of a coating polymer
 - Two critical to quality attributes (CQA)
 - Response 1: Percent conversion
 - Response 2: Polymer viscosity
 - Two critical process parameters
 - Parameter 1: reaction time
 - Parameter 2: reaction temperature
- Product profile: target CQA
 - Percent conversion: > 68%
 - Viscosity: 40 ± 2 mPA-secs

Bayesian Response Surface Model

Experimental Design

- Central composite design
- 8 setting combinations (4 corners and 4 faces of a square)
- 5 centerpoints
- Models
 - Response surface models for conversion and viscosity
 - linear, cross-product and quadratic terms for each response

Bayesian Regression and Analysis in R (Rproject)

inferen

MCMC Bayesian Regression inference

Model Coefficient Distribution

inference

Posterior Distributions

Observed vs. Predicted: Viscosity

inference

Knowledge Space

95% Credibility Intervals

Conversion

1.5 13 8.5 - 1.4 1.0 1.0 B 12 1.3 0.5 0.5 11 0.90 1.2 Time Time 0.0 0.0 -4. 10 1.1 -0.5 -0.5 9 - 1.0 B -1.0 -1.0 8 - 0.9 0.95 0.8 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 Time Time

Viscosity

inference

Mean Response Plots

Viscosity

Response Probability Distributions from Blue Reference

Joint Probability Distribution inference

Conversion>68 & Viscosity>38 & Viscosity<42

Optimization: Pareto Frontier inference from Blue Reference

Pareto/Joint Probability Overlay

Conversion>68 & Viscosity>38 & Viscosity<42

inference

50% Credibility Design Space inference from Blue Reference

take-home message

©2009 Blue Reference, Inc. All rights reserved.

26

Benefits of Bayesian Approach from Blue Reference

- Provides estimates of uncertainty in model parameters.
- Enables use of prior information leading to more efficient adaptive design and experimentation.
- Provides a figure of merit (probability) for meeting product profile (specifications) in terms consistent and easy to understand by technical workers operating in a regulated environment.
- Enables use of Pareto optimization in conjunction with risk minimization.
- Enables a means to establish the reliability of the Design Space.
- Provides a basis for selection of alternate process settings within the design space while ensuring "assurance of quality."

References

- John J. Peterson (2004). "A posterior predictive approach to multiple response surface optimization." *Journal of Quality Technology*, 36, 139-153.
- John J. Peterson (2008). "A Bayesian approach to the ICH Q8 Definition of Design Space." Journal of Biopharmaceutical Statistics, 18, 959-975.

inference

For additional information contact: Paul van Eikeren, Ph.D. Paul.van.Eikeren@BlueReference.com

www.InferenceforQbD.com

©2009 Blue Reference, Inc. All rights reserved.