"R in Hydrological Modelling: Why we should try it ?

Mauricio Zambrano Bigiarini PhD candidate, 3rd year

Dep. of Civil and Env. Engineering University of Trento, Italy

mauricio.zambrano@ing.unitn.it

July 08th, 2009

1 / 26

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

Some areas that take advantage of R's features:

Batch reading of input files

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

- Batch reading of input files
- Exploratory data analysis

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

- Batch reading of input files
- Exploratory data analysis
- Time series management and analysis

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

- Batch reading of input files
- Exploratory data analysis
- Time series management and analysis
- Geostatistics and spatial analysis

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

Some areas that take advantage of R's features:

- Batch reading of input files
- Exploratory data analysis
- Time series management and analysis
- Geostatistics and spatial analysis
- GIS & RDBMS linkage

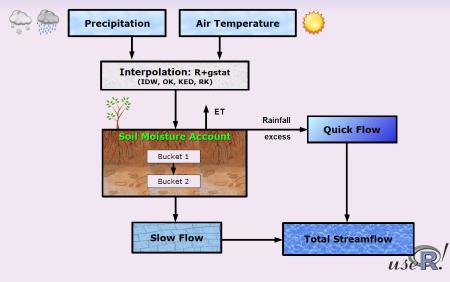
Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).

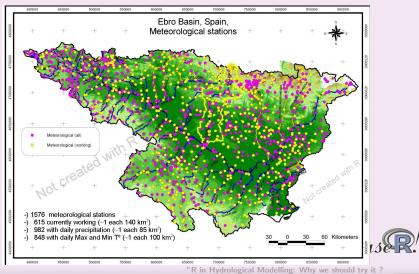
- Batch reading of input files
- Exploratory data analysis
- Time series management and analysis
- Geostatistics and spatial analysis
- GIS & RDBMS linkage
- Goodness-of-fit between observed and simulated values

Objective

To present some features and packages that make of **R** a powerful **environment** for **pre-processing** and **analysing** input data of **hydrological models** and **post-processing** its results. In particular, examples are taken from using **R** to analyse data of a large river basin (85000 km2).


Some areas that take advantage of R's features:

- Batch reading of input files
- Exploratory data analysis
- Time series management and analysis
- Geostatistics and spatial analysis
- GIS & RDBMS linkage
- Goodness-of-fit between observed and simulated values
- Easy re-use of already developed functions/procedures (scripts/packages)


3 / 26

Hydrological Modelling

The problem

1576 meteorological stations with daily data from 1912-2004

Context

The problem (cont.)

445 streamflow stations with daily data from 1912-2004

Batch reading and data organization

Thousands of raw data \rightarrow 1 data.frame (base::list.files, utils::read.fwf)

P90	01.CH	HE 🛛											
190	01 R	EINOS	A	_					(CANTABRI	A	- Header	row
2 P	9001	DTOT				our	e	0	14	0	14	0	14
ЗF <mark>S</mark>	tatio	п тот	215_	101	nth ^o	ID			14	0	14	0	14
4 F	ID	TOT	Vear	9	V-1+4	1.00		0	14	0	14	0	14
5 P		υTOT	Year ∠µ∋⊥1	10	Value*1	14		30	14	220	14	350	14
6 P	9001	DTOT	21911	11	O	14		0	14	0	14	0	14
7 P	9001	DTOT	21912	1	0	14		0	14	0	14	0	14
8 P	9001	DTOT	21912	2	630	14		80	14	140	14	1270	14
9 P	9001	DTOT	21912	З	20	14		430	14	10	14	0	14
10 P	9001	DTOT	21912	4	980	14		0	14	0	14	0	14
11 P	9001	DTOT	21912	5	0	14		0	14	0	14	10	14
12 P	9001	DTOT	21912	6	70	14		770	14	30	14	0	14
13 P	9001	DTOT	21912	7	10	14		140	14	0	14	260	14
14 P	9001	DTOT	21912	8	1100	14		0	14	450	14	0	14
15 D	0001	DTOT	21012	a	0	1/		1.80	1/	10	1/	10	1/

Batch reading and data organization (cont.)

```
Thousands of raw data \rightarrow 1 \ data.frame (base::list.files, utils::read.fwf)
```

```
# Creating a list with all the FILES with an extension equal to 'file.ext'
# in the directory specified by 'drty'
```

```
pfiles <- list.files(path= drty, pattern=paste(".", file.ext, "$", sep=""), ignore.case =TRUE )</pre>
```

```
# Reading the raw data file
# c(11,1,4,2) = 11 positions for descriptive string; 1 for number of digits in the variable; 4 for
# rep(c(7,4),31) = repeat 31 times (maximum number of days/month) the "7 4" values;
# 7 positions (including the leading space) for the Value of the variable and 4
# skip=1 for skipping the first comment line
pp <- read.fwf(p che filename, widths=c( c(11,1,4,2), rep(c(7,4),31) ), skip=1)</pre>
```


7 / 26

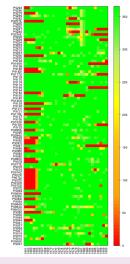
Batch reading and data organization (cont.)

Matrix notation for subsetting data (numeric, dates, factors...)

	Ini <- "1961 End <- "1961 Window <- se	- 02- 03"	#03-Feb	- 196	1	as.Date	(End),	by="days")
				~				
	x.ts [x. ts\$Da	te %in⁰	⊌ Window	- (1	:3, 5,	10:12)]	
	Date	P9001	29008X PS	9015	P9041	P9044 F	9048	
	1961-01-01	0.2	10	NA	0.0	NA	NA	
	1961-01-02	7.7	19	NA	20.3	NA	NA	
	1961-01-03	2.1	0	NA	0.0	NA	NA	
	1961-01-04	7.2	15	NA	22.0	NA	NA	
	1961-01-05	0.2	0	NA	0.0	NA	NA	
	1961-01-06	5.3	19	NA	10.0	NA	NA	
	1961-01-07	1.4	1	NA	1.1	NA	NA	
	1961-01-08	0.8	0	NA	0.0	NA	NA	
)	1961-01-09	0.2	5	NA	5.6	NA	NA	
	1961-01-10	17.3	18	NA	0.0	NA	NA	
1	1961-01-11	19.4	12	NA	26.0	NA	NA	
}	1961-01-12	0.0	0	NA	0.0	NA	NA	
	1961-01-13	0.0	0	NA	0.0	NA	NA	
1	1961-01-14	0.0	0	NA	0.0	NA	NA	

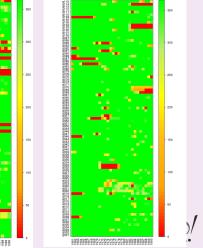
Batch reading and data organization (cont.)

Easy **summary** of the time series stored in each station, within a target period (base::summary)

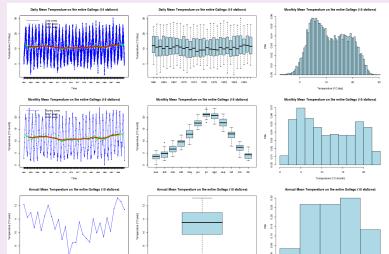

> a <- x.ts[x.ts\$Date > summarv(a)	%in% Window, c(1:3, 5, 10:12)]		
Date	P9001	P9008X	P9015	P9041
Min. :1961-01-01	Min. : 0.00	Min. : 0.00	Min. : NA	Min. : 0.00
lst Qu.:1961-01-10	lst Qu.: 0.00	lst Qu.: 0.00	lst Qu.: NA	lst Qu.: 0.00
Median :1961-01-18	Median : 0.40	Median : 0.00	Median : NA	Median : 0.00
Mean :1961-01-18	Mean : 2.81	Mean : 4.41	Mean :NaN	Mean : 3.59
3rd Qu.:1961-01-26	3rd Qu.: 3.88	3rd Qu.: 9.50	3rd Qu.: NA	3rd Qu.: 4.47
Max. :1961-02-03	Max. :19.40	Max. :19.00	Max. :NA	Max. :26.00
			NA's : 34	

Visual summary of available data

Days with information per station and year (lattice::levelplot)


Precipitation - Days with info in each station. 1961-1990. Part 1/4

Temperature - Days with info in each station. 1961-1990. Part 1/2


Streamflows - Days with info in each station. 1961-1990. Part 1/2

"R in Hydrological Modelling: Why we should try it ?

Daily, monthly and annual plots

zoo::plot.zoo; graphics::boxplot, hist + customization

11 / 26

Filling in missing data on stations

Following Teegavarapu et al. (1985), a modified Inverse Distance Weighted **IDW** algorithm was used for filling in the missing daily data on each station, using the **Pearson's product-moment coefficient** instead of the spatial distance as the weight:

$$R_m = \frac{\sum_{i=1}^{N} R_i \cdot \theta_{m,i}}{\sum_{i=1}^{N} \theta_{m,i}}$$

where:

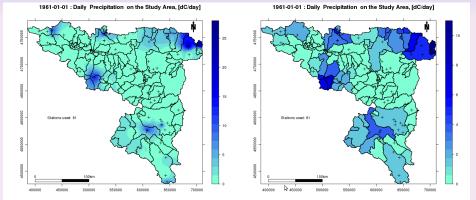
- R_m : Missing daily precipitation on station m
- $\theta_{m,i}$: CC between the time series of the target station m and the station i with a known value
- R_i: Known daily precipitation on station i
- N: Number of neighbours with the highest CC to be considered (personal contribution, unpublished)

12 / 26

Filling in missing data on stations (cont.)

```
# The function 'interpoll' is within the 'lib TSA in HydrologicalModelling.R' libr
for)(s in 1:nstations) {
  starting.date <- pp.ts[1, "Date"]</pre>
  ending.date <- pp.ts[ndates, "Date"]
  sname <- pp.gis.catch$INDICATIVO[s]</pre>
  # Printing a message that indicates the date that is being interpolated
  print( paste("station:", sname, ",", s, "of", nstations, "; Dates:",
         starting.date, "-", ending.date, ";", ndates, "days", sep=" ") )
  pp.ts.idw[1:ndates, s] <- (sapply)1:ndates, function(i,x,y,z) {</pre>
 # Putting the interpolated values into the corresponding row, given by 'i',
 # of 'pp.ts.idw'
  z[i, s] <-(interpoll)x, y, i, s, method="cc-neighs", n.neighs)</pre>
 }, x=pp.ts.catch, y= cc, z=pp.ts.idw)
} # FOR 's' end
                                        "R in Hydrological Modelling: Why we should try it ?
                                                                                13 / 26
```

Mean Precipitation on Subcatchments

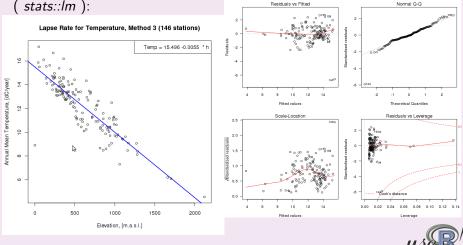

Modified Block IDW:

- IDW over a square grid with cells of 1 km2 (maptools::readShapePoly; sp::spsample)
- 2 Only the 5 nearest neighbours (with data) are considered
- For each day, the mean value in each one of the 120 subcatchments is computed, averaging over all the cells belonging to each sub-catchment gstat::krige

14 / 26

Mean Precipitation on Subcatchments

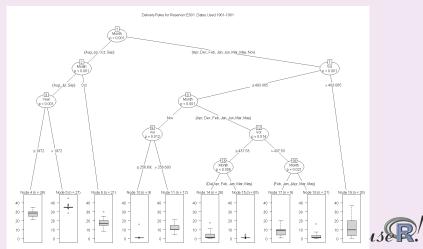
Defining a sampling GRID. If grid.type="regular', then the grid is made of squared cells of 'cell.size'
meters x 'cell.size' meters with regular spacing.
catchment.grid <- (spsample)SubCatchments.shp, type=grid.type, cellsize=cell.size, offset = c(0.5, 0.5))
Making possible that the grid can be used in the interpolations:
gridded(catchment.grid) <- TRUE
Interpolating with the INVERSE DISTANCE WEIGHTED, , using the
'N.max' nearest neighbours. 'N.min' minimum number of station and Dist.Max' maximum distance</pre>


x.idw <- {krige}value~1, locations=x.work, newdata=catchement.grid, hmin=N.min, nma=N.max, maxdist=Dist.Max) "R in Hydrological Modelling: Why we should try it ?

Lapse rates computation

Linear model for temperature (stats::lm):

Residuals:

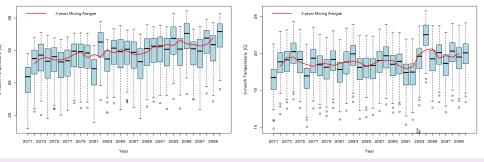


"R in Hydrological Modelling: Why we should try it ?

17 / 26

Reservoir Rules

party::ctree was used for getting the **monthly delivery** of the reservoir as a function of the **month** and the **stored volume**

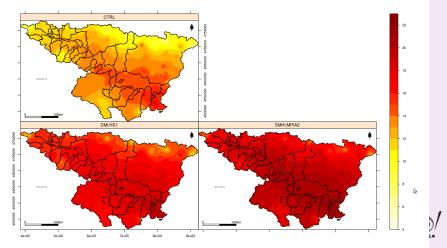


Seasonal evolution of temperature

graphics::boxplot, lines + customization:

SMHI.MPIA2: Seasonal Temperature on the Ebro: SUMMER (JJA). 2071-2100. 146 stations

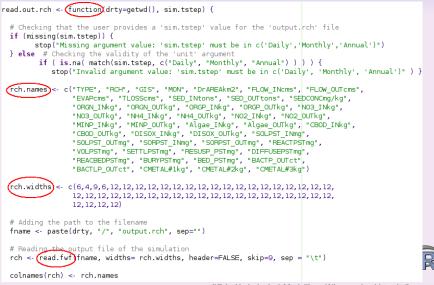
SMHI.MPIA2: Seasonal Temperature on the Ebro: AUTUMN (SON). 2071-2100. 146 stations

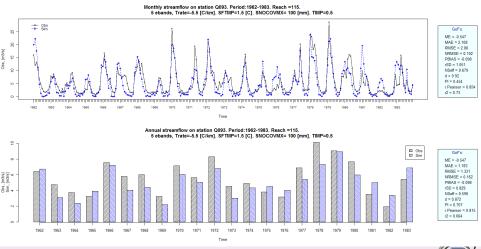

18 / 26

Where to start ?

Comparison of spatio-temporal patterns

sp::spplot + customization:


Annual Mean Temperature on the Ebro River Basin, [ºC]


"R in Hydrological Modelling: Why we should try it ?

20 / 26

Reading output files with fixed format

Streamflows: Simulated v/s Observed

21 / 26

Summary

Why a hydrological modeller should invest time in trying R ?

- Models, graphics and analysis can be easily tailored to particular needs
- 2 Many ready-to-use algorithms
- Write once use many times
- Huge and active user community
- Ocumentation is available in several languages
- Multi-platform (GNU/Linux, MacOS, Windows)
- Open Source
- Image: Second Second

22 / 26

Summary

Why a hydrological modeller should invest time in trying R? (cont.)

Other useful areas/packages (not discussed here):

- Geostatistics (automap, geoR, geoRglm, fields, spBayes, RandomFields)
- **GIS** (spgrass6, RSAGA, RGoogleMaps, rgdal, mampproj)
- Wavelet analysis (wavelets)
- HPC (jit, NWS, Rmpi, snow, taskPR, multicore)
- Programming language interfaces (C, Fortran, Python, Perl, Java...)
- Optimization (optim)
- Linkage to Spreadsheets & DB (RExcelInstaller, RPostgreSQL, RMySQL, RSQLite)
- Linkage to other statistical software, e.g: S, SAS, SPSS, Stata, Systat (foreign)
- Bayesian statistics

R

Can be thought as an environment that provides the latest research developments in (spatio-temporal) statistics to efficiently tackle most of the practical problems that reality poses to the hydrological modeller

24 / 26

Where to start?

- http://cran.r-project.org/manuals.html
- Inttp://cran.r-project.org/web/packages/
- http://addictedtor.free.fr/graphiques/
- http://www.statmethods.net/index.html
- http://r-spatial.sourceforge.net/
- http://casoilresource.lawr.ucdavis.edu/drupal/node/438
- http://www.rseek.org/

Thanks !

Questions ?

