
Streaming Data And
Concurrency In R

Rory Winston

rory@theresearchkitchen.com

About Me

Independent Software Consultant
M.Sc. Applied Computing, 2000
M.Sc. Finance, 2008
Apache Committer
Interested in practical applications of functional languages and
machine learning
Really interested in seeing R usage grow in finance

1 A Short Rant

2 Why We Need Concurrency

3 Motivating Example

4 Conclusion

5 References and Further Reading

A Short Rant

Parallelization vs. Concurrency in R

Multithreading vs. parallelization
i.e. fork() vs. pthread_create()
R interpreter is single threaded
Some historical context for this (e.g. non-threadsafe BLAS
implementations)
Multithreading can be complex and problematic
Instead a focus on parallelization:

Distributed computation: gridR, nws, snow
Multicore/multi-cpu scaling: Rmpi, Romp, pnmath
Interfaces to PBLAS/Hadoop/OpenMP/MPI/Globus/etc.

Parallelization suits large CPU-bound processing applications
So do we really need it at all then?

Why We Need Concurrency

Multithreading Is A Valuable Tool

I say, "yes"
For general real-time (streaming to be more precise) data
analysis
(Growing interest in using R for streaming data, not just
offline analyis)
GUI toolkit integration
Fine-grained control over independent task execution
Fine-grained control over CPU-bound and I/O-bound task
management
"I believe that explicit concurrency management tools (i.e. a
threads toolkit) are what we really need in R at this point." -
Luke Tierney, 2001

Why We Need Concurrency

Will There Be A Multithreaded R?

Short answer is: Most likely not
At least not in its current incarnation
Internal workings of the interpreter not particularly amenable
to concurrency:

Functions can manipulate caller state («- vs. <-)
Lazy evaluation machinery (promises)
Dynamic State, garbage collection, etc.
Scoping: global environments
Management of resources: streams, I/O, connections, sinks

Implications for current code
Possibly in the next language evolution (cf. Ihaka?)

Motivating Example

Motivating Example

Based on work I did last year and presented at UseR! 2008
Wrote a real-time and historical market data service from
Reuters/R
The real-time interface used the Reuters C++ API
R extension that spawned listening thread and handled market
updates
New version also does publishing as well as subscribing

Motivating Example

Motivating Example

The (real-world) example involves building a new
high-frequency trading system
Step 1 is handling market prices (in this case interbank
currency prices)
Need to ensure that the new system’s prices are:

Correct;
Fast

Motivating Example

C++ RMDS API

R Analytics

RMDS Message Bus

Motivating Example

Issues With This Approach

As R interpreter is single threaded, cannot spawn thread for
callbacks
Thus, interpreter thread is locked for the duration of
subscription
Not a great user experience
Need to find alternative mechanism

Motivating Example

Alternative Approach

If we cannot run subscriber threads in-process, need to
decouple
Standard approach: add an extra layer and use some form of
IPC
For instance, we could:

Subscribe in a dedicated R process (A)
Push incoming data onto a socket
R process (B) reads from a listening socket

Sockets could also be another IPC primitive, e.g. pipes, shared
mem
We will use the bigmemoRy package to leverage the latter

Motivating Example

The bigmemoRy package

From the description: "Use C++ to create, store,
access, and manipulate massive matrices"

Allows creation of large (≥ RAM) matrices
These matrices can be mapped to files/shared memory
It is the shared memory functionality that we will use

big.matrix(nrow, ncol, type = "integer",)
shared.big.matrix(nrow, ncol, type = "integer", ...)
filebacked.big.matrix(nrow, ncol, type = "integer", ...)
read.big.matrix(file, sep=, ...)

Motivating Example

Sample Usage

> library(bigmemory)
> X <- shared.big.matrix(type="double", ncol=1000, nrow=1000)
> X
An object of class “big.matrix”
Slot "address":
<pointer: 0x7378a0>

Motivating Example

Create Shared Memory Descriptor

> desc <- describe(X)
> desc
$sharedType
[1] "SharedMemory"

$sharedName
[1] "53f14925-dca1-42a8-a547-e1bccae999ce"

$nrow
[1] 1000

$ncol
[1] 1000

$rowNames
NULL

$colNames
NULL

$type
[1] "double"

Motivating Example

Export the Descriptor

In R session 1:

> dput(desc, file="/tmp/matrix.desc")

In R session 2:

> library(bigmemory)
> desc <- dget("/tmp/matrix.desc")
> X <- attach.big.matrix(desc)

Now R sessions A and B share the same big.matrix instance

Motivating Example

Share Data Between Sessions

R session 1:

> X[1,1] <- 1.2345

R session 2:

> X[1,1]
[1] 1.2345

Thus, streaming data can be continuously fed into session A
And concurrently processed in session B

Motivating Example

C++ RMDS API

R / bigmemoRy

R / bigmemoRy

RMDS Message Bus

RMDS Message Bus

C++ RMDS API

Conclusion

Summary

Lack of threads not necessarily a barrier to concurrent analysis
Packages like bigmemoRy, nws, etc. facilitate decoupling via
IPC
Could potentially take this further (using e.g. nws)

References and Further Reading

References

bigmemoRy:
http://cran.r-project.org/web/packages/bigmemory/

Luke Tierney’s original threading paper:
http://www.cs.uiowa.edu/~luke/R/thrgui/

HPC and R Survey:
http://epub.ub.uni-muenchen.de/8991/

Inside The Python GIL:
www.dabeaz.com/python/GIL.pdf

http://cran.r-project.org/web/packages/bigmemory/
http://www.cs.uiowa.edu/~luke/R/thrgui/
http://epub.ub.uni-muenchen.de/8991/
www.dabeaz.com/python/GIL.pdf

	A Short Rant
	Why We Need Concurrency
	Motivating Example
	Conclusion
	References and Further Reading

