iPlots eXtreme

Next-generation interactive graphics for analysis of large data

Simon Urbanek

AT&T Labs
Statistics Research
Overview

• About interactive graphics
• iPlots: next generation - why and how?
• New approaches
• Design and implementation (more at DSC)
• Example
• Summary
About iPlots

iPlots = Interactive Graphics for R
- selection, highlighting, brushing ...
- interactive change of plot parameters
- queries
- all essential plots (scatterplots, barcharts, histograms, parallel coordinate plots, mosaic plots, boxplots ..)

Extensible framework
- add your own objects (points, lines, text, polygons, ...)
- create custom plots (define statistical objects in R)

(Java implementation available since 2003 - www.iplots.org)
Next generation: Goals

• Support for large data
 - fast rendering (leverage modern GPUs via OpenGL)
 - native data structures (no copying from R)
 - fastest code possible (C++ subset, aggressively optimizing compilers)

• Integration
 - seamless integration in R GUIs
 - direct callback interface with R

• Clean user interface
 - learn from “clunkiness” of old iPlots and other IGs
New research ideas
(in progress...)

• Combine models and plots interactively
 - \(p = \text{iplot}(x, y) + \text{lm}(y \sim x) \)
 • creates a visual representation of the model in the plot
 • the representation is fully interactive:
 - supports queries, interprets selection
 - allows change of model parameters interactively
 - functional approach (the method is a function of plot type and model class) allows generalization and extensibility

• more Exploratory Model Analysis (EMA)
iPlots - Basic Design

![Diagram showing the basic design of iPlots](image-url)
iPlots - Plot Design

- Axis
- Plot primitives
- Single plot primitive
- Plot-specific interface
- Highlighting
iPlots - Design

Marker (selector)

Dataset

Variable A
Variable B
...

Plot

Axis X
Axis Y
Axis Y_i

Plot definition

Primitive 1
Primitive 2
...

Graph with axes and bars
iPlots - Layers

- Interaction layer
- Selection layer
- Objects layer
- Background layer

Resulting picture
New in iPlots eXtreme design

• Plot objects can be visual primitives (graphics objects) or statistical primitives (linked to data)
• All primitives can have individual callbacks
• Allows multiple markers (e.g. 1:1, 1:n, m:n linking), no strict distinction between iSets
• R objects can have virtual attributes with direct access into C++ objects (e.g. `line$color = 1`, `histogram$bin.width = 0.1`)
• Reference-semantics storage (e.g. `plot$MyFoo`)
High-performance graphics back-end

- Can be used as R graphics device (very fast!)
- Supports double-buffering, delayed drawing (display when ready) and layers - controlled by R (great for animations)
- Exposes all interactivity to R (from mouse, keyboard level to selection, zoom etc.)
- Flexible layout facility for all components (R graphics, interactive plots, ...)
Implementation

• Complete re-write from scratch
• Uses a strict subset of C++ (no templates, MI, ...)
• Purely self-contained code (no STL, ...)
• Own object model (NeXT-like semantics, reference counting, debug-mode with RTTI)
• Cross-platform (purely OpenGL based + very thin platform-specific layer [Cocoa, Windows, GLUT, ...])
• Does not depend on a toolkit
• Can be used as a stand-alone application or R package or an application linked to libR
Conclusion

- Fast (C++, OpenGL: interactivity on >1 mio points)
- Efficient (no copying, reference semantics)
- Built-in support for interactive visualization of statistical models
- Extensible (custom visuals, statistical objects, plots)
- Combines all worlds in one package: Fastest R device, interactive graphics, OpenGL (3D)
- CRAN release: September 2009 development code publicly available now
 http://RForge.net/Acinonyx/
Contact

• Simon URBANEK
 AT&T Labs-Research

urbanek@research.att.com

www.iPlots.org