Party on! A new, conditional variable importance measure for random forests

available in party

Carolin Strobl (LMU München) and Achim Zeileis (WU Wien)

Introduction

random forests

- have become increasingly popular in, e.g., genetics and the neurosciences
- can deal with "small n large p"-problems, high-order interactions, correlated predictor variables
- are used not only for prediction, but also to measure variable importance
(advantage: RF variable importance measures capture the effect of a variable in main effects and interactions
\rightarrow smarter for screening than univariate measures)

(Small) random forest

Measuring variable importance

A new, conditional importance

Conclusion

References

Measuring variable importance

Measuring variable importance

A new, conditional
importance

Conclusion

References

Measuring variable importance

- Gini importance
mean Gini gain produced by X_{j} over all trees (can be severely biased due to estimation bias and mutiple testing; Strobl et al., 2007)

Measuring variable importance

A new, conditional
importance

Measuring variable importance

- Gini importance
mean Gini gain produced by X_{j} over all trees
(can be severely biased due to estimation bias and
Measuring variable
importance

A new, conditional
importance

Conclusion
References mutiple testing; Strobl et al., 2007)

- permutation importance
mean decrease in classification accuracy after permuting X_{j} over all trees
(unbiased when subsampling is used; Strobl et al., 2007)

The permutation importance

within each tree t
Measuring variable importance

A new, conditional importance

$$
V I^{(t)}\left(\mathbf{x}_{j}\right)=\frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i}=\hat{y}_{i}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|}-\frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i}=\hat{y}_{i, \pi_{j}}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|}
$$

$\hat{y}_{i}^{(t)}=f^{(t)}\left(\mathbf{x}_{i}\right)=$ predicted class before permuting
$\hat{y}_{i, \pi_{j}}^{(t)}=f^{(t)}\left(\mathbf{x}_{i, \pi_{j}}\right)=$ predicted class after permuting X_{j}
$\mathbf{x}_{i, \pi_{j}}=\left(x_{i, 1}, \ldots, x_{i, j-1}, x_{\pi_{j}(i), j}, x_{i, j+1}, \ldots, x_{i, p}\right)$
Note: $V I^{(t)}\left(\mathbf{x}_{j}\right)=0$ by definition, if X_{j} is not in tree t

The permutation importance

Measuring variable importance

A new, conditional importance

Conclusion

$$
V I\left(\mathrm{x}_{\mathrm{j}}\right)=\frac{\sum_{t=1}^{n \text { tree } V I(t)}\left(\mathrm{x}_{\mathrm{j}}\right)}{\text { ntree }}
$$

What null hypothesis does this permutation scheme correspond to?

obs	Y	X_{j}	Z
1	y_{1}	$x_{\pi_{j}(1), j}$	z_{1}
\vdots	\vdots	\vdots	\vdots
i	y_{i}	$x_{\pi_{j}(i), j}$	z_{i}
\vdots	\vdots	\vdots	\vdots
n	y_{n}	$x_{\pi_{j}(n), j}$	z_{n}

Measuring variable importance

A new, conditional importance

$$
\begin{gathered}
H_{0}: X_{j} \perp Y, Z \text { or } X_{j} \perp Y \wedge X_{j} \perp Z \\
\quad P\left(Y, X_{j}, Z\right) \stackrel{H_{0}}{=} P(Y, Z) \cdot P\left(X_{j}\right)
\end{gathered}
$$

What null hypothesis does this permutation

 scheme correspond to?Measuring variable
importance

A new, conditional
the current null hypothesis reflects independence of X_{j} from both Y and the remaining predictor variables Z
\Rightarrow a high variable importance can result from violation of
either one!

Suggestion: Conditional permutation scheme

$o b s$	Y	X_{j}	Z
1	y_{1}	$x_{\pi_{j \mid Z=a}(1), j}$	$z_{1}=a$
3	y_{3}	$x_{\pi_{j \mid Z=a}(3), j}$	$z_{3}=a$
27	y_{27}	$x_{\pi_{j \mid Z=a}(27), j}$	$z_{27}=a$
6	y_{6}	$x_{\pi_{j \mid Z=b}(6), j}$	$z_{6}=b$
14	y_{14}	$x_{\pi_{j \mid Z=b}(14), j}$	$z_{14}=b$
33	y_{33}	$x_{\pi_{j \mid Z=b}(33), j}$	$z_{33}=b$
\vdots	\vdots	\vdots	\vdots

Measuring variable importance

A new, conditional importance

$$
H_{0}: X_{j} \perp Y \mid Z
$$

$$
\begin{aligned}
P\left(Y, X_{j} \mid Z\right) & \stackrel{H_{0}}{=} P(Y \mid Z) \cdot P\left(X_{j} \mid Z\right) \\
\text { or } P\left(Y \mid X_{j}, Z\right) & \stackrel{H_{0}}{=} P(Y \mid Z)
\end{aligned}
$$

Technically

Measuring variable importance

A new, conditional importance

Conclusion

- use any partition of the feature space for conditioning

Technically

Measuring variable importance

A new, conditional importance

- use any partition of the feature space for conditioning
- here: use binary partition already learned by tree

Simulation study

- dgp: $y_{i}=\beta_{1} \cdot x_{i, 1}+\cdots+\beta_{12} \cdot x_{i, 12}+\varepsilon_{i}, \varepsilon_{i} \stackrel{i . i . d .}{\sim} N(0,0.5)$
- $X_{1}, \ldots, X_{12} \sim N(0, \boldsymbol{\Sigma})$

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccccccc}
1 & 0.9 & 0.9 & 0.9 & 0 & \cdots & 0 \\
0.9 & 1 & 0.9 & 0.9 & 0 & \cdots & 0 \\
0.9 & 0.9 & 1 & 0.9 & 0 & \cdots & 0 \\
0.9 & 0.9 & 0.9 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Measuring variable importance

A new, conditional importance

Conclusion
References

X_{j}	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	X_{5}	X_{6}	X_{7}	X_{8}	\cdots	X_{12}
β_{j}	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{0}$	-5	-5	-2	0	\cdots	0

Results

Measuring variable importance

A new, conditional importance

Conclusion

References

Peptide-binding data

Measuring variable importance

A new, conditional importance

Conclusion

References

R-Example

spurious correlation between shoe size and reading skills in

 school-childrenMeasuring variable importance

A new, conditional importance

Conclusion
> mycf <- cforest(score ~ ., data = readingSkills,
$+\quad$ control $=$ cforest_unbiased $(m t r y=2)$)
> varimp(mycf)
nativeSpeaker age shoeSize
$12.62926 \quad 74.89542 \quad 20.01108$
> varimp(mycf, conditional = TRUE)
nativeSpeaker age shoeSize
$11.808192 \quad 46.995336 \quad 2.092454$
from party 0.9-991

Conclusion

- conditional permutation is expensive
- but gets us closer to the interpretation of importance that we (statisticians) are used to \rightarrow beta coefficients, partial correlations
- choice of mtry has a high impact

General remarks

Measuring variable
importance

A new, conditional importance
small values of mtry may often be a good choice - but not in the case of correlated predictors!

- make sure your results are stable before interpreting importance rankings
fit another forest with a different random seed - if the ranking changes increase ntree

Measuring variable importance

A new，conditional importance

Conclusion

References

Measuring variable importance

A new, conditional

Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007).
Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8:25.

