Party on! A new, conditional variable importance measure for random forests available in party

Carolin Strobl (LMU München) and Achim Zeileis (WU Wien)

useR! 2009

Measuring variable mportance

A new, conditional mportance

Conclusion

Introduction

random forests

- have become increasingly popular in, e.g., genetics and the neurosciences
- can deal with "small n large p"-problems, high-order interactions, correlated predictor variables
- are used not only for prediction, but also to measure variable importance

(advantage: RF variable importance measures capture the effect of a variable in main effects <u>and</u> interactions \rightarrow smarter for screening than univariate measures) Measuring variable

A new, conditional mportance

Conclusion

(Small) random forest

Measuring variable importance

A new, conditional importance

Conclusion

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Measuring variable importance

A new, conditional mportance

Conclusion

References

・ロト・西下・西下・日下・ 日下

Gini importance mean Gini gain produced by X_j over all trees (can be severely biased due to estimation bias and mutiple testing; Strobl et al., 2007) Measuring variable importance

A new, conditional mportance

Conclusion

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Gini importance

mean Gini gain produced by X_j over all trees (can be severely biased due to estimation bias and mutiple testing; Strobl et al., 2007)

permutation importance
 mean decrease in classification accuracy after
 permuting X_j over all trees
 (unbiased when subsampling is used; Strobl et al., 2007)

Measuring variable importance

A new, conditional mportance

Conclusion

The permutation importance

within each tree t

$$VI^{(t)}(\mathbf{x}_{j}) = \frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i} = \hat{y}_{i}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|} - \frac{\sum_{i \in \overline{\mathfrak{B}}^{(t)}} I\left(y_{i} = \hat{y}_{i,\pi_{j}}^{(t)}\right)}{\left|\overline{\mathfrak{B}}^{(t)}\right|}$$

Measuring variable importance

A new, conditional mportance

Conclusion

References

 $\hat{y}_i^{(t)} = f^{(t)}(\mathbf{x}_i) = \text{predicted class before permuting}$

 $\hat{y}_{i,\pi_j}^{(t)} = f^{(t)}(\mathbf{x}_{i,\pi_j})$ = predicted class after permuting X_j

$$\mathbf{x}_{i,\pi_j} = (x_{i,1}, \ldots, x_{i,j-1}, x_{\pi_j(i),j}, x_{i,j+1}, \ldots, x_{i,p})$$

Note: $VI^{(t)}(\mathbf{x}_j) = 0$ by definition, if X_j is not in tree t

The permutation importance

over all trees:

 $VI(\mathbf{x}_j) = \frac{\sum_{t=1}^{ntree} VI^{(t)}(\mathbf{x}_j)}{ntree}$

Measuring variable importance

A new, conditional importance

Conclusion

What null hypothesis does this permutation scheme correspond to?

obs	Y	X_j	Ζ
1	<i>y</i> 1	$X_{\pi_j(1),j}$	<i>z</i> ₁
÷	÷	÷	÷
i	Уi	$X_{\pi_j(i),j}$	Zi
÷	÷	÷	÷
п	Уn	$X_{\pi_j(n),j}$	Zn

 $egin{aligned} &\mathcal{H}_0: X_j \perp Y, Z ext{ or } X_j \perp Y \wedge X_j \perp Z \ &\mathcal{P}(Y, X_j, Z) \stackrel{\mathcal{H}_0}{=} \mathcal{P}(Y, Z) \cdot \mathcal{P}(X_j) \end{aligned}$

Measuring variable importance

A new, conditional importance

Conclusion

References

・ロト・4回ト・モー・モー・クへで

What null hypothesis does this permutation scheme correspond to?

the current null hypothesis reflects independence of X_j from both Y and the remaining predictor variables Z

 \Rightarrow a high variable importance can result from violation of

either one!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Measuring variable importance

A new, conditional mportance

Conclusion

Suggestion: Conditional permutation scheme

or

obs	Y	X_j	Ζ		importance
1	<i>y</i> 1	$X_{\pi_{j Z=a}(1),j}$	$z_1 = a$	-	A new, conditional
3	<i>y</i> 3	$X_{\pi_{j Z=a}(3),j}$	$z_3 = a$		
27	<i>Y</i> 27	$X_{\pi_i Z=a}(27), j$	<i>z</i> ₂₇ = <i>a</i>		Conclusion
6	<i>Y</i> 6	$X_{\pi_{j Z=b}(6),j}$	$z_6 = b$	-	References
14	<i>Y</i> 14	$X_{\pi_{j Z=b}(14),j}$	$z_{14} = b$		
33	<i>y</i> 33	$X_{\pi_{j Z=b}(33),j}$	$z_{33} = b$		
÷	÷	:	÷		
P(Y,	$X_j Z_j$	$H_0 = P(Y $	$Z) \cdot P(X_j $	Z)	
P(Y	X_j, Z_j	$\stackrel{H_0}{=} P(Y $	Z)		

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Technically

Measuring variable importance

A new, conditional importance

Conclusion

References

use any partition of the feature space for conditioning

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

Technically

Measuring variable importance

A new, conditional importance

Conclusion

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

use any partition of the feature space for conditioning

here: use binary partition already learned by tree

Simulation study

► dgp:
$$y_i = \beta_1 \cdot x_{i,1} + \dots + \beta_{12} \cdot x_{i,12} + \varepsilon_i, \ \varepsilon_i \stackrel{i.i.d.}{\sim} N(0, 0.5)$$

► $X_1, \dots, X_{12} \sim N(0, \Sigma)$

	(1	0.9	0.9	0.9	0		0)
	0.9	1	0.9	0.9	0	•••	0
	0.9	0.9	1	0.9	0	•••	0
$\boldsymbol{\Sigma} =$	0.9	0.9	0.9	1	0	•••	0
	0	0	0	0	1	•••	0
	÷	÷	÷	÷	÷	·	0
	0	0	0	0	0	0	1)
	`						,

Xi X_1 $X_2 X_3 X_4 X_5 X_6 X_7 X_8$ $\cdots X_{12}$ β_i 5 5 2 0 -5 -5 -2 0 0 . . .

・ロト・西ト・山田・山田・山口・

/leasuring variable mportance

A new, conditional importance

Conclusion

Results

Peptide-binding data

(ロ) (型) (E) (E) (E) (つ)(C)

R-Example

spurious correlation between shoe size and reading skills in school-children

```
> mycf <- cforest(score ~ ., data = readingSkills,</pre>
                  control = cforest_unbiased(mtry = 2))
+
> varimp(mycf)
                                 shoeSize
nativeSpeaker
                        age
     12.62926
                   74.89542
                                 20.01108
> varimp(mycf, conditional = TRUE)
nativeSpeaker
                                 shoeSize
                        age
    11.808192
                 46.995336
                                 2.092454
```

from party 0.9-991

Vleasuring variable mportance

A new, conditional importance

Conclusion

Conclusion

- conditional permutation is expensive
- ▶ but gets us closer to the interpretation of importance that we (statisticians) are used to → beta coefficients, partial correlations
- choice of mtry has a high impact

Measuring variable importance

A new, conditional mportance

Conclusion

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

General remarks

default settings for mtry vary between implementations
 e.g., for classification:

randomForest: mtry= \sqrt{p} cforest: mtry= 5

small values of mtry may often be a good choice - but not in the case of correlated predictors!

 make sure your results are stable before interpreting importance rankings

fit another forest with a different random seed - if the ranking changes increase ntree

Measuring variable importance

new, conditional nportance

Conclusion

A new, conditional importance

Conclusion

References

・ロト・日本・日本・日本・日本

- Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis (2008). Conditional variable importance for random forests. *BMC Bioinformatics 9:307*.
- Strobl, C., A.-L. Boulesteix, A. Zeileis, and T. Hothorn (2007).Bias in random forest variable importance measures:Illustrations, sources and a solution. *BMC Bioinformatics 8:25*.

A new, conditional mportance

Conclusion