Using R for mathematical modelling (the environment).

Karline Soetaert

NETHERLANDS INSTITUTE OF ECOLOGY

Introduction

Dynamic differential equations Steady-state solutions Linear models History/Outlook

Why models Mass balance In this talk.

Natural systems are very complex

□ Scientists want to understand this complexity and make quantitative predictions

□Model = simplifications of the complex natural environment

Test model to data

□Quantification of unmeasured processes

□Budgetting, interpolation in time/space □....

□Prediction of future behavior

Why models Mass balance In this talk.

□ Mathematical model based on mass balance conservation

 \Rightarrow Differential equations

Why models Mass balance In this talk..

□Use R to solve mathematical mass balance models

□Three different types of models/solutions – three main packages

Integration (deSolve)
Steady-state solution (rootSolve)
Least-squares solutions (limSolve)

What was available + what is new

□Two examples

HIV model (dynamic / steady-state)Deep-water coral food web

Example 1: hiv dynamics

Large interest in viral infection

- Human disease
- □Marine animals, algae, bacteria are affected
 - \Rightarrow Important role in biogeochemical cycles

HIV dynamics Solving dynamic differential equation Differential equations in R The HIV/AIDS model in R

HIV dynamics Solving dynamic differential equations Differential equations in R The HIV/AIDS model in R

Model formulation:

Derivative

Initial condition

$$\frac{dC}{dt} = f(\Theta, C, t, u)$$
$$C_{t=0} = C0$$

Model solution: integration

$$C(t)$$
 For $t > t_0$

HIV dynamics Solving dynamic differential equations **Differential equations in R** The HIV/AIDS model in R

Previously on CRAN: odesolve (Setzer 2001)

□Nice interface

Two integration routines:
 RungeKutta, not meant to be used
 Isoda, good for small, simple models

□Models implemented in R or compiled code DLL (fast)

BUT:

Only simplest Ordinary Differential Equations (ODE)
not flexible,
not suited for large problems

HIV dynamics Solving dynamic differential equations **Differential equations in R** The HIV/AIDS model in R

Now on CRAN:

deSolve (Soetaert, Petzoldt, Setzer)
 Initial value problems
 > 10 integration routines

Simple and complex ODE
 Differential algebraic equations (DAE)
 Partial differential equations: (PDE)
 1-D, 2-D, 3-D problems

Flexible; Sparse, banded, full JacobianMedium-sized to large problems (up to 80000 state variables)

DvpSolve (Soetaert)

Boundary value problems

□2 solution methods

```
Introduction
        Dynamic differential equations
        Steady-state solutions
                                                                  The HIV/AIDS model in R
        Linear models
        History/Outlook
hiv<- function( time, y, pars) {</pre>
    with (as.list(c(pars,y)), {
       dH <- lam -rho*H - bet*H*V
                                                                                          Healthy cells
            <- bet*H*V -delt*I
       dT
                                                                             300
       dV <- n*delt*I - c*V - bet*H*V
                                                                             200
       return( list(c(dH, dI, dV)) )
    })
                                                                                0
                                                                                     10
                                                                                         20
                                                                                               30
                                                                                                    40
                                                                                                        50
  }
                                                                                              time
y <- c(H= 100, I = 150, V = 50000)
                                                                                         Infected cells
times <- 0:60
                                                                             120
                                                                             80
pars<- c(bet=0.00002,rho=0.15,delt=0.55,c=5.5,lam=80,n=900)</pre>
                                                                             윿
out <- ode(y=y, parms=pars, times=times, func=hiv)</pre>
                                                                               0
                                                                                    10
                                                                                         20
                                                                                               30
                                                                                                    40
                                                                                                        50
                                                                                              time
 plot(out[,"time"], out[,"H"])
                                                                                           Viral load
```


60

60

Simplification may be necessary

Root solvers, steady-states

Problem: dynamic models require many data:

$$\frac{dC}{dt} = \sum f_i(C,\Theta,t,u,\ldots) - \sum f_j(C,\Theta,t,u,\ldots)$$

□Knowledge of initial values

Time-variable forcing functions (external data, u)

=> Not always available

Solution:

 $0 = \sum f_i(C, \Theta, ...) - \sum f_j(C, \Theta, ...)$

Assume **steady-state**

=>Systems of **nonlinear equations**

Calculate **stability** properties

Simplification may be necessary Implementation in R Root solvers, steady-states, stability

Previously on CRAN:

uniroot solves for one root of one nonlinear equation within interval

We need:

□ Find all roots within one interval

□Functions to estimate gradient matrices, Jacobians (stability)

□Solve roots of n nonlinear equations (steady-state analysis)

Simplification may be necessary Implementation in R Root solvers, steady-states, stability

Now on CRAN:

□rootSolve (Soetaert)

uniroot.all, *jacobian*: stability analysis
 multiroot: roots of general nonlinear functions (Newton-Raphson)

steady, steady.1D, steady.2D, steady.3D, runsteady: steady-state solvers
 Fully compatible with integration routines from **deSolve** Suited for large problems (~100 000 equations)
 Sparse, banded, full Jacobian

STD <- runsteady(y=y, func=hiv, parms=pars)</pre>

eigen(jacobian.full (y=STD\$y, func=hiv, parms=pars))\$values

Linear models History/Outlook

Simplification may be necessary

Deep-water coral food web Linear inverse models Linear inverse model solutions Solving LIM in R Implementing LIM in R

Problem:

 \Box mechanistic nonlinear models have many parameters (θ):

⇒Many are unknown
⇒need to be fitted to data
⇒Data not always available

$$\frac{dC}{dt} = \sum f_i(C,\Theta,t,\ldots) - \sum f_j(C,\Theta,t,\ldots)$$

Inonlinear equations may not be known

Solution:

Avoid nonlinear equationsNo parameters

The sources and sinks (fi->i) are the unknowns

⇒Linear model

$$\frac{dC_{j}}{dt} = \underbrace{\sum_{Sources} f_{i \to j}}_{Sources} - \underbrace{\sum_{Sinks} f_{j \to k}}_{Sinks}$$

$$\frac{d\mathbf{C}}{dt} = \mathbf{A} \cdot \mathbf{x}$$

History/Outlook

Simplification may be necessary Deep-water coral food web Linear inverse models Linear inverse model solutions Solving LIM in R Implementing LIM in R

Example 2: Deep-water coral food webs

Corals are commonly found at ~ 800-1000 m water depth.

A large number of animals are living in the coral reefs

It is very expensive to do research there

 \Rightarrow Data are very fragmentary

 \Rightarrow Who is eating who? How much do they eat?

 \Rightarrow A model is needed to see the global picture

Linear models History/Outlook

Problem:

number of equations <<< number of unknowns (under determined)

Coral food web: 51 equations ~ 140 unknowns

⇒There is no unique solution(~ fitting a straight line through one point)

Simplification may be necessary Deep-water coral food web Linear inverse models Linear inverse model solutions Solving LIM in R Implementing LIM in R

Solution 1. Add data from other sources to equalities =>achieve overdeterminacy (1 solution)

Solution 2. Data from other sources as "inequalities"

Linear models History/Outlook Simplification may be necessary Deep-water coral food web Linear inverse model solutions Solving LIM in R Implementing LIM in R

equality equation:

 $\mathbf{E}\mathbf{x} = \mathbf{f}$

(in situ data, mass balance)

inequality equation:

(literature data, physiological constraints,..)

 $\mathbf{G}\mathbf{x} \ge \mathbf{h}$

» the matrix equations are solved for the vector with food web flows

Simplification may be necessary Deep-water coral food web Linear inverse models Linear inverse model solutions Solving LIM in R Implementing LIM in R

Dealing with the underdeterminacy:

Coral : Solution is a 140-dimensional SPACE! \Rightarrow Within this space, every point equally likely

 \Rightarrow 3 different ways of solving:

Linear models History/Outlook Simplification may be necessary Deep-water coral food web Linear inverse models Linear inverse model solutions Solving Linear Inverse Models in R Implementing LIM in R

Previously on CRAN

□ solve.qp, (quadprog): quadratic programming

 $\min \left\| \mathbf{A}\mathbf{x} \approx \mathbf{b} \right\|, \mathbf{E}\mathbf{x} = \mathbf{f}, \mathbf{G}\mathbf{x} \ge \mathbf{h}$

 \Box /p , (**lpSolve**): linear programming min($\sum a_i x_i$), **Ex** = **f**, **Gx** \ge **h**

But:

solve.qp tends to fail for some problems
lp requires x to be positive (linear programming)
lp and solve.qp are not compatible
No monte carlo sampling of underdetermined systems
Implementing large matrices: error-prone

Linear models History/Outlook Simplification may be necessary Deep-water coral food web Linear inverse models Linear inverse model solutions Solving Linear Inverse Models in R

mplementing LIM in R

Now on CRAN:

limSolve (Soetaert, van Oevelen, van den Meersche)

□least squares,

□linear programming,

□least distance programming

□*xranges, xsample:* range estimation and random sampling

LIM (Soetaert, van Oevelen)

□ Models are specified in text files

Introduction Mass balance **Dynamic differential equations** In this talk... **Steady-state solutions** Linear models **F**1 Β Α History/Outlook F2 $\frac{dC_{j}}{dt} = \underbrace{\sum flow_{i \to j}}_{i \to j} - \underbrace{\sum flow_{j \to k}}_{output}$ Linear limSolve LIM **Steady-state** $\mathbf{0} = \sum f_i(C, \Theta, \dots) - \sum f_i(C, \Theta, \dots)$ data nonlinear rootSolve availability complexity reality $\frac{dC}{dt} = \sum f_i(C,\Theta,t,u,\ldots) - \sum f_j(C,\Theta,t,u,\ldots)$ **Dynamic** deSolve

History Future

Before 2006: Fortran, Excel, Powerpoint, Sigmaplot, own software

□End 2005. First acquaintance with R

□End 2006. Decision to use R for our scientific programming / graphics

 \Rightarrow Implement functions not yet available

History Now and Future

Three years later...

- \Rightarrow Basic solution methods available
- \Rightarrow 5 Solver packages (deSolve, rootSolve, bvpSolve, limSolve, LIM)
- \Rightarrow Specific model applications

□Reactive transport models, (ReacTran) ⇒rivers, estuaries, lakes, sediments

□Toxicology, (ToxWebs)

 \Rightarrow toxic substances in marine organisms

□Ecological network analysis (NetIndices)

D....

History Now and Future

THANK YOU

Soetaert K. and P.M.J. Herman, 2009. A practical guide to ecological modelling – using R as a simulation platform. Springer, 372 pp

. . . .

Soetaert, K., van Oevelen, D., 2009. Modeling food web interactions in benthic deep-sea ecosystems: a practical guide. Oceanography (22) 1: 130-145.