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Introduction & motivation

Psychologists have been using a variety of experimental paradigms to
study associative learning.

A computer software is needed to implement models of associative
learning for teaching and research.

Macho (2002) implemented the configural model of Pearce with
Microsoft Excel.
Schultheis, Thorwart, & Lachnit (2008) implemented the elemental
model of Harris with MATLAB.
Excel and MATLAB are commercial software.
Programming with spreadsheets is inefficient.
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Pavlovian conditioning (Pavlov, 1927)

Theories of associative learning are concerned with the factors that
govern the association formation when two stimuli are presented
together (Pearce & Bouton, 2001).

Conditioning
Before

Unconditioned Stimulus (US) Unconditioned Response (UCR)
Food Salivation
Bell -

During
Conditioned Stimulus (CS) + US UCR

Bell + Food Salivation
After

CS Conditioned Response (CR)
Bell Salivation
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Blocking (Kamin, 1969)

Condition Stage 1 Stage 2 Test
Treatment Light Light+Tone Tone

Shock Shock

Control - Light+Tone Tone
- Shock

Trial 16 8

Rats in the treatment group showed no fear of the tone, while rats in
the control group were afraid of it.
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The Rescorla-Wagner model (1972)

At each trial, the association strength between a given CS and the US
changes in proportion to the discrepancy between the maximum strength
supported by the US and the total strength of all conditioned stimuli
present at the current trial:

∆Vcs = αcsβus(λus −
n∑

i=1

Vi )
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Blocking Effect Explained

Conditioning
End of stage 1 CS Present Weight CR

Light 1 1 1
Tone 0 0 0

During stage 2
Light 1 1 1
Tone 1 0 0

Test
Light 0 1 0
Tone 1 0 0
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Configural or elemental associations

Two Problems for Elemental Theories

The core assumption of any elemental theory, including stimu-
lus sampling theory and the Rescorla–Wagner model, is that stim-
ulus elements become independently associated with the US. How-
ever, the soundness of this assumption is seriously questioned by
demonstrations that animals can learn certain conditional discrim-
inations between stimulus compounds that cannot be solved by a
simple elemental process (Spence, 1952). Two examples are neg-
ative patterning and biconditional discrimination. In negative pat-
terning, two CSs (A and B) are presented on separate trials, and
each is followed by the US (�). Intermixed among these A� and
B� trials are trials in which the two stimuli are presented simul-
taneously but not followed by the US (AB�). A simple elemental
view predicts that the associative strengths of A and B will
increase on A� and B� trials and will decrease on AB� trials.
However, responding should always be greater on the AB� trials
because the combined associative strengths of A and B will pro-
voke more responding than that elicited by either stimulus alone.
In view of this prediction, it is important that, in a variety of
conditioning paradigms, animals have been shown to master neg-
ative patterning discriminations, albeit with considerable diffi-
culty: They learn to respond more on A� and B� trials than on
AB� trials (e.g., Pavlov, 1927; Rescorla, 1972, 1973; Whitlow &
Wagner, 1972).

Biconditional discriminations present an even more complex
task. Four distinctive stimuli (A, B, C, and D) are presented in four
pairwise combinations, two of which are reinforced (AB� and
CD�) and two of which are not reinforced (AC� and BD�).
Thus, each of the four CSs is reinforced when presented in one
compound and not reinforced in another compound. Therefore, all
stimuli have equivalent reinforcement history and so provide no
differential information to cue the animal to respond or not re-
spond. In other words, like negative patterning, biconditional dis-
criminations are not solvable by a simple elemental mechanism.
Nonetheless, animals can solve such discriminations, learning to
respond more on AB� and CD� trials than on AC� and BD�
trials (Rescorla, Grau, & Durlach, 1985; Saavedra, 1975).

The Configural Solution to Conditional Discriminations

In light of demonstrations that animals can solve negative pat-
terning and biconditional discriminations, Wagner and Rescorla
(1972) adopted a notion put forward by Spence (1952) that stim-
ulus compounds are represented by their components and an
additional configural element that represents the conjunction of
those stimuli. These configural representations function like other
elements, in that they enter into associations with the US in the
same way that the individual stimulus elements do. This principle
is illustrated in Figure 1.

The inclusion of this configural representation allows the
Rescorla–Wagner model to explain negative patterning and bicon-
ditional discriminations. In the case of negative patterning, the
separate A and B elements acquire excitatory associative strength
with the US, whereas the AB configural element acquires a strong
inhibitory association that opposes the excitatory associations si-
multaneously activated by the A and B elements. Similarly, a
biconditional discrimination is solved by the acquisition of strong

inhibitory associations from the configural elements of the nonre-
inforced compounds (AC and BD in the previous example) and
excitatory associations from the configural elements of the rein-
forced compounds (AB and CD).

The addition of a configural element to the representation of a
stimulus compound enabled the Rescorla–Wagner model to ex-
plain how animals can learn to withhold responses to a nonrein-
forced compound whose component CSs are excitatory. However,
in the absence of such explicit training, the model predicts the
summation of responding when two or more CSs are presented in
compound. Although there are many demonstrations that animals
do respond to the compound of two CSs more than to each CS
individually (e.g., Kehoe, 1982, 1986; Rescorla, 1997), there are
also many reported failures to observe summation in Pavlovian
conditioning paradigms. Many of these failures have arisen in
autoshaping experiments with pigeons (e.g., Aydin & Pearce,
1995, 1997; Rescorla & Coldwell, 1995), but both successes and
failures to observe summation have been reported in other para-
digms, such as the conditioned nictitating membrane response in
rabbits (Kehoe, Horne, Horne, & Macrae, 1994) and the condi-
tioned magazine approach with rats (Pearce, George, & Aydin,
2002; Rescorla, 1997). Such mixed evidence is troubling for the
Rescorla–Wagner model because of its commitment to predicting
summation.

The Replaced Elements Theory

Brandon and Wagner (1998; Wagner & Brandon, 2001) have
recently presented a more elaborate elemental model of stimulus
representation that is designed to deal with many of the difficulties
that face the Rescorla–Wagner model. Like the approach originally
adopted by Wagner and Rescorla (1972), this theory assumes that
new configural elements are activated when stimuli are presented
in compound, but it additionally proposes the inhibition of ele-
ments otherwise activated when the stimuli are presented in iso-
lation. Thus, some elements activated by the individual stimuli are
replaced by the configural elements activated by the stimulus
compound. In its original version, the model assumed a specific
pairwise replacement that was different for different compounds

Figure 1. Elemental and configural representations in the Rescorla–
Wagner model. Individual stimuli (A and B) activate representations (black
circles) that become associated with the unconditioned stimulus (US). A
compound stimulus (AB) activates these same representations but addi-
tionally activates a configural representation (black square) that specifi-
cally codes for the conjunction of A and B and forms an independent
association with the US.

586 HARRIS

Conditioning with a compound stimuli results in a unitary
representation of the compound entering into association with the
reinforcer.

When two or more stimuli are presented for conditioning, each
element may enter into association with the reinforcer.
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Human associative learning (Shanks, et al. 1998)

Stage 1 Stage 2 Test
A+ B+ A+
AB- GH+ AB-
AC+ IJ- AC-
D+ - D+
DE- - DE-
DF+ - DF-

Trial 15 10 10

Participants were asked to predict whether an allergy would occur (+)
for the food (A) presented and received feedback trial by trial.

Learning at stage 2 should lead to more positive responses for AB
than for DE if patterns are learned elementwise.
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Food Stimuli

A Cheese Fromage
B Chocolate Chocolat
C Milk Lait
D Cucumber Concombre
E Fish Poisson
F Banana Banane
G Olive oil Huile d’olive
H Vinegar Vinaigre
I Onion Oignon
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Human associative learning (Shanks, et al. 1998)

1362 SHANKS, CHARLES, DARBY, AND AZMI

Experiment 3

The experiment was identical in all respects to Experi-
ment 2 (Stage 1: A — O i t AB —• no O, AC — Olf Stage 2:
B —»O]) except that an additional set of stimuli was
included in Stage 1 (D -»• O2, DE -* no O, and DF — O2)
for which the target negative cue (E) was not revalued in
Stage 2. The key question in this experiment was to examine
the extent to which responding to the control stimulus DE at
test was lower than responding to AB. The unique-cue
explanation under consideration predicts an increase in B's
strength of at least 0.5X, provided that B commences Stage 2
with a zero or negative associative strength. Even though the
exact mapping from associative strengths to allergy re-
sponses is unknown, this is a large change that should be
readily detectable relative to any change in E's strength that
is due only to forgetting. In contrast, on the notion that
participants learn about entire configurations of elements,
the revaluation of B should have rather little impact on
responding to AB.

Method

Participants. The participants were a further 33 psychology
undergraduates.

Procedure. This experiment was identical to Experiment 2
except as described below. The design is given in Table 1. The
foods were the same as in Experiment 2 with the addition of
vinegar and onions. In Stage 1, participants received A —• Oh

AB —* no 0, and AC —* Oi trials together with functionally
equivalent D -» O2, DE -» no O, and DF — O2 trials. Each trial
type was presented on 15 occasions, the order of which was
randomized. The combination of stimuli was determined by Latin
squares such that each of the critical foods (cheese, chocolate,
milk) was presented equally often as cue A, B, and C and likewise
for the foods assigned to D-F (cucumber, fish, banana). In Stage 2,

participants were presented with 10 B —•O, trials, together with 10
GH -* O3 and 10 U -» no O filler trials. In the final phase,
participants were presented with 10 trials each of A —* Oi, AB —*
no O, AC -»no O, D — O2, DE — no O, and DF — no O. There
were 180 case histories in total.

Results and Discussion

The left-hand side of Figure 3 shows the mean percentage
of allergy predictions on the final trial of the first stage. It is
clear that the percentage of allergy responses was close to
100% for trial types associated with allergies (A, AC, D, and
DF) and close to zero for trial types associated with no
allergy (AB and DE), consistent with the unique-cue theo-
ry's assumption that both B and E have acquired negative
weights. The center part of the figure illustrates the rate at
which the allergy scores for the B —* OY trials changed
during Stage 2. On the first trial, B elicited few allergy
responses, again consistent with its having a negative
weight. By the end of Stage 2, however, B elicited allergy
responses on close to 100% of trials. Thus, there is much
more compelling evidence of a dramatic change in B's
associative strength than in Williams' (1995, Experiment 5)
experiment.

The right-hand side of Figure 3 shows participants'
allergy scores when presented with the A —»O], AB —• no O,
AC — no O, D — O2, DE -»no O, and DF -»no O test trials
in Stage 3. First, it is clear that the results of Experiment 2
have been replicated in that AB elicited far fewer allergy
responses than AC. Second, and equally unsurprisingly, DE
elicited fewer allergy responses than DF. The crucial result,
however, is that no more allergy responses were made to AB
than to DE, despite the fact that one constituent of the AB
compound had been revalued in Stage 2. In fact, on the first
test trial, slightly fewer allergy responses were made to AB

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Stage 1 Stage 2 Test

Figure 3. Mean percentage of allergy predictions in the three stages of Experiment 3. A-F are
foods.

Responses to AB and DE at the test stage were virtually the same.
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The configural model of Pearce (1987)
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The configural model of Pearce

ac
j = (ai t · w c

j)
σ

ao =
J∑
j

wo
j · ac

j

∆wo
j = αjβk(λk − ao)

ac
j is the activation of configural unit j .

ai is the input vector.

w c
j is the configural vector of configural unit j .

σ is the specificity parameter.

ao is the activation of output unit.

∆wo
j is the weight change between configural unit j to output.

Sheu & Cheng (NCKU) ALM 9 July 2009 13 / 24



The elemental model of Harris (2006)

∆wy = wy −
m∑
j=i

wj − Vj−y

∆Vxy =

{
wxβy ∆wy if ∆wy ≥ t

−wxβy | ∆wy | if ∆wy < t

R(A) =
n∑

i=1

wAiVAi

A stimulus activates a population of elements.

Activated elements compete for entry to an attention buffer with capacity t.

Each element has a fixed probability of being connected to any other elements.

∆Vxy is the change in association strength between element x and element y.

∆wy is the difference between self-generated weight, wy , and the activated weight of y by
association.

R(A) is the response strength of A.
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Input file

Cue A B C D E F US Phase Feedback Iseval
A 1 0 0 0 0 0 1 1 1 1
AB 1 1 0 0 0 0 0 1 1 1
AC 1 0 1 0 0 0 1 1 1 1
D 0 0 0 1 0 0 1 1 1 1
DE 0 0 0 1 1 0 0 1 1 1
DF 0 0 0 1 0 1 1 1 1 1
B 0 1 0 0 0 0 1 2 1 1
AB 1 1 0 0 0 0 0 2 0 0
DE 0 0 0 1 1 0 0 2 0 0
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Configural model of Pearce in R

CMP=function(dat, itemlabel, items, phase, US, feedback, nb1=15,
nb2=10, sigma=2, alpha=1, beta=0.15, lambda=c(0,100))

dat: input dataframe

itemlabel: column index for item label

items: column indices for items

phase: column index for phase

US: column index for unconditioned stimulus

feedback: column index for feedback

nb1: number of learning trials in phase 1

nb2: number of learning trials in phase 2

sigma: specificity parameter

alpha: salience parameter

beta: learning rate parameter

lambda: asymptotic value of the unconditioned stimulus
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Elemental model of Harris in R

EMH=function(dat, itemlabel, items, phase, feedback, nelements=20,
nruns=20, ntrials=c(20,20), beta=2, gain=1, fraction=0, cdensity=.5)

dat: input dataframe

itemlabel: column index for item label

items: column indices for items

phase: column index for phase

feedback: column index for feedback

nelements: number of elements

nruns: number of simulation runs

ntrials: number of trials in each of two phases

beta: learning rate parameter

gain: gain parameter

fraction: fraction parameter

cdensity: connectivity density parameter
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An example script

> input=read.table(“xp3data.asc”, h=t)
> cmpOut=CMP(input[1:9,1:10],1,c(2:7),9,8,10,sigma=2);
> CMP.plot(cmpOut$sumdata,cmpOut$itemlabel,“sigma=2”)
#
> emhOut=EMH(input[1:9,1:10],1,c(2:8),9,10,ntrial=c(30,20))
> EMH.plot(emhOut$sumdata,emhOut$evallabs, “EMH Plot”)
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Human associative learning - CMP
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Figure: σ=2 vs. σ=10
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Human associative learning
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Two discrimination problems

In positive patterning, two stimuli are not reinforced when each is
presented alone (A-, B-), but a US follows when the two are
presented together (AB+).

In negative patterning, a US is presented after each of two stimuli
when they are presented alone (A+, B+), but not when they are
presented together (AB-).
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Positive Patterning: A-,B-, AB+
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Figure: CMP vs. EMH
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Negative Patterning: A+, B+, AB-
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Summary

We implemented in R two models for associative learning.

The unique cue theory and the replaced elements model are yet to be
implemented.

The ALM R package enables users to easily reproduce, modify, and
extend these models for teaching and research.
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