The Determination of an Environmental Service for a Contingent Valuation Study – Using R to Compute Estimates

> GD Sharp, DG Friskin, S Hosking, CG Logie, M Nasila & H van der Westhuizen

Introduction

- This research forms part (a very small part) of an eight year study determining the value of freshwater inflow into South African estuaries
- In total 40 estuaries surveyed
- These results are for the Bushman's estuary, on the Southern coast of South Africa

STUDY AREA: The Bushmans Estuary

Background

- Used a survey method, contingent valuation to determine people's willingness to pay for a hypothetical scenario
- Administered 300 questionnaires, 71 protests, 229 valid questionnaires
- Initial analysis H van der Westhuizen (Masters degree)
- Used Excel, Statistica and EViews

Methodology

- Used R to
 - Estimate a linear model
 - Predict dependent variable values
 - Bootstrapped predicted values
 - Obtained bootstrapped densities for three estimates; mean, median and trimmed mean
 - Compared bootstrapped CI for mean, median and trimmed mean

DATA COLLECTED

- Dependent variable WTP
- Independent variables 11
 - Continuous (6)
 - Household size, income, frequency of use, annual levies, distance travelled & value of equipment
 - Discrete (5)
 - Race, gender, visitor, environmental knowledge & return

Results of H van der Westhuizen

Dependent Variable: <i>ln</i> (WTP)							
Model: Reduced : Observations: 229							
Method:	Least Squares						
Variable	Coefficient	Std. Error	t-Statistic	Probability			
RACE	4.5132	0.6436	7.0126	0.0000			
VISITOR	1.1440	0.4573	2.5015	0.0131			
KNOW	1.0997	0.4598	2.3916	0.0176			
<i>ln</i> (LEVIES)	0.2123	0.0430	4.9320	0.0000			
С	-1.5878	0.4484	-3.5412	0.0005			
R-squared			0.5787				
Adjusted R-squared			0.5712				
Probability (F-statistic)			0.0000				

Results of H van der Westhuizen

- Model: Reduced LS
- Mean predicted WTP: R253
- Median predicted WTP: R118

STATISTICAL CRITICISMS

- Skewed data which measure of central tendency?
 - Solution can compromise and use a more robust measure, i.e. trimmed mean
- Point estimates of WTP, prefer interval estimates.
 - Solution use of resampling (bootstrapping) method to obtain interval estimate

Results from R

- Coefficients:
- Estimate Std. Error t value Pr(>|t|)
- (Intcept) -1.58711 0.44844 -3.539 0.000488 ***
- Race 4.51322 0.64359 7.013 2.73e-11 ***
- Visitor 1.14407 0.45731 2.502 0.013073 *
- Know 1.09969 0.45983 2.392 0.017605 *
- In.levies 0.21216 0.04302 4.932 1.59e-06 ***

Results from R

Mean WTP

Histogram bootstrapped means

Bootstrapped histograms of WTP

Histogram bootstrapped median

Bootstrapped histograms of WTP

WTP in rands

Histogram bootstrapped 25% trimmed means

Bootstrapped histograms of WTP

WTP in rands

WTP: DENSITY PLOTS

N = 10000 Bandwidth = 6.818

Results

	Mean	Median	Lower 95%	Upper 95%
Mean	245.54	242.19	159.15	351.44
Trimmed mean	146.01	142.65	83.56	224.79
Median	119.93	113.64	35.47	245.85

Conclusions

- This valuation provides conservationists with a method for attaching an economic value for a recreational service.
- R very useful and FREE
- Do not think this would have been possible with Statistica (perhaps possible with EViews)

(My) Experience with R

- Steep learning curve
- Graphic labelling not easy
- Interesting
- Will encourage others to start using the software
- Colleague quite proficient helpful with guidance
- Use or lose my type of problem

The End

- Thanks to
 - My co-authors who all made contributions along the way
 - The National Research Foundation (NRF) and Water Research Council (WRC) for financial assistance
 - The R community/developers for making available a very useful package