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OverviewOverview

● MotivationMotivation
● Random Matrix TheoryRandom Matrix Theory
● Shrinkage EstimationShrinkage Estimation
● Measuring EffectivenessMeasuring Effectiveness

● Kullback-Leibler distanceKullback-Leibler distance
● Financial measuresFinancial measures

● ReconciliationReconciliation



  

MotivationMotivation

● Sample covariance != true covariance matrixSample covariance != true covariance matrix
● Estimation error is large when !(T >> N)Estimation error is large when !(T >> N)

● Large portfoliosLarge portfolios
● Monthly time frameMonthly time frame

● Need a good estimate of covariance matrixNeed a good estimate of covariance matrix



  

ApproachesApproaches

● Eigenvalue Eigenvalue 
distributiondistribution

Physics: Random matrix theory
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ApproachesApproaches

● Eigenvalue Eigenvalue 
distributiondistribution

● Null hypothesisNull hypothesis
● Remove noise Remove noise 

componentcomponent

Physics: Random matrix theory



  

ApproachesApproaches

Statistics: Shrinkage Estimation

● Central limit Central limit 
theoremtheorem
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Statistics: Shrinkage Estimation

● Central limit Central limit 
theoremtheorem

● Weighted averageWeighted average
αα F + (1- F + (1-αα) S) S



  

ApproachesApproaches

Statistics: Shrinkage Estimation

● Central limit Central limit 
theoremtheorem

● Weighted averageWeighted average
αα F + (1- F + (1-αα) S) S

● Reduced Reduced 
estimation errorestimation error



  

ApproachesApproaches

Which is Right?



  

Random Matrix TheoryRandom Matrix Theory
● Eigenvalue distribution of random matrices Eigenvalue distribution of random matrices 

is defined by the Marcenko-Pastur limitis defined by the Marcenko-Pastur limit

● Sample correlation matrices can be filtered Sample correlation matrices can be filtered 
to remove this noiseto remove this noise

● The reconstructed matrix is then used in The reconstructed matrix is then used in 
portfolio optimizationportfolio optimization
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Random Matrix TheoryRandom Matrix Theory
● Random matrix with Random matrix with 

normal distribution; normal distribution; 
N=1000, T=4000N=1000, T=4000

● Random matrix with Random matrix with 
normal distribution; normal distribution; 
N=250, T=1000N=250, T=1000

● Random matrix with Random matrix with 
normal distribution; normal distribution; 
N=50, T=200N=50, T=200

Marcenko-Pastur Distributions
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Random Matrix TheoryRandom Matrix Theory
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Random Matrix TheoryRandom Matrix Theory
● Daily S&P 500; N=384, Daily S&P 500; N=384, 

T=1200T=1200
● Daily S&P 500 subset; Daily S&P 500 subset; 

N=75, T=200N=75, T=200
● Shuffled S&P 500; N=75, Shuffled S&P 500; N=75, 

T=200T=200

Fitting the Null Hypothesis

Q = 2.072958
σ = 0.8152044



  

Random Matrix TheoryRandom Matrix Theory
● Daily S&P 500; N=384, Daily S&P 500; N=384, 

T=1200T=1200
● Daily S&P 500 subset; Daily S&P 500 subset; 

N=75, T=200N=75, T=200
● Shuffled S&P 500;  Shuffled S&P 500;  

N=75, T=200N=75, T=200

Fitting the Null Hypothesis

Q = 1.768204
σ = 0.6321195



  

Random Matrix TheoryRandom Matrix Theory
● Daily S&P 500; N=384, Daily S&P 500; N=384, 

T=1200T=1200
● Daily S&P 500 subset; Daily S&P 500 subset; 

N=75, T=200N=75, T=200
● Shuffled S&P 500; N=75, Shuffled S&P 500; N=75, 

T=200T=200

Fitting the Null Hypothesis

Q = 2.514132
σ = 1.019011



  

Shrinkage EstimationShrinkage Estimation

● James-Stein revealed that a global mean James-Stein revealed that a global mean 
existsexists

● Shrinking samples toward a global mean Shrinking samples toward a global mean 
improves accuracy of estimationimproves accuracy of estimation

● This can be applied to covariance This can be applied to covariance 
matricesmatrices



  

Shrinkage EstimationShrinkage Estimation

● The true mean is unknownThe true mean is unknown
● Many candidates exist for covarianceMany candidates exist for covariance

● Identity matrixIdentity matrix
● Constant correlation matrixConstant correlation matrix
● Biased estimator (e.g. Barra)Biased estimator (e.g. Barra)

What is the global mean?



  

Shrinkage EstimationShrinkage Estimation
● Use a single value or Use a single value or 

calculate per iterationcalculate per iteration
● Ledoit & Wolf propose Ledoit & Wolf propose 

optimal coefficientoptimal coefficient

Shrinkage Intensity

=
T

=−




  

Filtering Correlation MatricesFiltering Correlation Matrices

RMT reconstructs RMT reconstructs 
correlation matrix correlation matrix 
from the empirical from the empirical 
correlation matrix by correlation matrix by 
replacing all replacing all 
eigenvalues in noise eigenvalues in noise 
part of spectrum with part of spectrum with 
their meantheir mean

Shrinkage estimation Shrinkage estimation 
takes a weighted takes a weighted 
average between the average between the 
sample covariance sample covariance 
and a global mean and a global mean 
using a calculated using a calculated 
shrinkage constantshrinkage constant



  

Does It Work?Does It Work?
● How do you measure effectiveness?How do you measure effectiveness?
● Again, two approachesAgain, two approaches

● Kullback-Leibler distanceKullback-Leibler distance
● Out of sample portfolio returnsOut of sample portfolio returns

● Which will you believe?Which will you believe?



  

Kullback-Leibler DistanceKullback-Leibler Distance

● KL distance measures the entropy KL distance measures the entropy 
between two probability density functionsbetween two probability density functions

● Not a true distance - but still useful!Not a true distance - but still useful!
●     Triangle inequality is not satisfiedTriangle inequality is not satisfied
●     Not symmetricNot symmetric

● Can measure information content and Can measure information content and 
stabilitystability



  

Kullback-Leibler DistanceKullback-Leibler Distance
Theoretical LimitTheoretical Limit



  

Kullback-Leibler DistanceKullback-Leibler Distance
Empirical ResultsEmpirical Results



  

Portfolio PerformancePortfolio Performance
● Minimum varianceMinimum variance

SPX random subset (100 assets) – 175 day window, 125 dates
           sharpe.ratio annual.return annual.stdev
rmt           0.1911074  0.04646651    0.2431435
shrink       -0.5547973 -0.12035726    0.2169392
shrink.m      0.6403425  0.23386712    0.3652219
hybrid       -0.1934593 -0.04509580    0.2331023
raw.sample   -0.5535997 -0.15960243    0.2882993
market        0.3956911  0.13857861    0.3502192

SPX random subset (100 assets) – 125 day window, 175 dates
       sharpe.ratio annual.return annual.stdev
rmt         -0.73633608   -0.20746138    0.2817482
shrink      -0.83450696   -0.24169547    0.2896267
shrink.m     0.09709427    0.04461285    0.4594797
hybrid      -0.69065240   -0.18980906    0.2748257
raw.sample   0.36170223    0.17826057    0.4928379
market      -0.06505888   -0.02908206    0.4470114



  

Portfolio PerformancePortfolio Performance
Minimum variance optimizationMinimum variance optimization



  

ReconciliationReconciliation

● Is there a connection between the Is there a connection between the 
theories?theories?

● Examine eigenvalue distributionsExamine eigenvalue distributions
● What about a hybrid approach?What about a hybrid approach?
● What about other eigenvalues?What about other eigenvalues?



  

ReconciliationReconciliation
RMT replaces 'noisy' eigenvalues with average valueRMT replaces 'noisy' eigenvalues with average value



  

ReconciliationReconciliation
Shrinkage scales eigenvalues towards a single valueShrinkage scales eigenvalues towards a single value



  

ReconciliationReconciliation

● The eigenvalue of the global mean is in The eigenvalue of the global mean is in 
the noise part of the RMT spectrum!the noise part of the RMT spectrum!

● Both methods reduce noise by averaging Both methods reduce noise by averaging 
out noisy eigenvaluesout noisy eigenvalues

● Difference is in executionDifference is in execution
● Hybrid approach has no benefitHybrid approach has no benefit

Eigenvalue distributionsEigenvalue distributions
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EndEnd

● All images were generated  by  using All images were generated  by  using 
Tawny (written by me)Tawny (written by me)

● Download Tawny from CRANDownload Tawny from CRAN
● https://nurometic.comhttps://nurometic.com
● b_rowe@ml.comb_rowe@ml.com or  or r@nurometic.comr@nurometic.com

https://nurometic.com/
mailto:b_rowe@ml.com
mailto:r@nurometic.com
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