A Tale of Two Theories:

Reconciling
random matrix theory and shrinkage estimation as methods for covariance matrix estimation

Brian Rowe

Vice President, Portfolio Analytics
Bank of America Merrill Lynch

July, 2009

Disclaimer

Abstract

The opinions expressed in this presentation are those of the author alone and do not necessarily reflect the views of Bank of America Merrill Lynch, its subsidiaries, or affiliates.

Abstract

"Bank of America Merrill Lynch" is the marketing name for the global banking and global markets businesses of Bank of America Corporation. Lending, derivatives, and other commercial banking activities are performed globally by banking affiliates of Bank of America Corporation, including Bank of America, N.A., member FDIC. Securities, strategic advisory, and other investment banking activities are performed globally by investment banking affiliates of Bank of America Corporation ("Investment Banking Affiliates"), including, in the United States, Banc of America Securities LLC and Merrill Lynch, Pierce, Fenner \& Smith Incorporated, which are both registered broker-dealers and members of FINRA and SIPC, and, in other jurisdictions, locally registered entities. Investment products offered by Investment Banking Affiliates: Are Not FDIC Insured * May Lose Value * Are Not Bank Guaranteed.

Overview

- Motivation
- Random Matrix Theory
- Shrinkage Estimation
- Measuring Effectiveness
- Kullback-Leibler distance
- Financial measures
- Reconciliation

Motivation

- Sample covariance != true covariance matrix
- Estimation error is large when !($\mathrm{T} \gg \mathrm{N}$)
- Large portfolios
- Monthly time frame
- Need a good estimate of covariance matrix

Approaches

Physics: Random matrix theory

- Eigenvalue distribution

Approaches

Physics: Random matrix theory

- Eigenvalue distribution
- Null hypothesis

Approaches

Physics: Random matrix theory

- Eigenvalue distribution
- Null hypothesis
- Remove noise component

Approaches

Statistics: Shrinkage Estimation

- Central limit theorem

Approaches

Statistics: Shrinkage Estimation

- Central limit theorem
- Weighted average $\alpha F+(1-\alpha) S$

Approaches

Statistics: Shrinkage Estimation

- Central limit theorem
- Weighted average $\alpha F+(1-\alpha) S$
- Reduced estimation error

Approaches

Which is Right?

Random Matrix Theory

- Eigenvalue distribution of random matrices is defined by the Marcenko-Pastur limit

$$
\begin{aligned}
& \rho(\lambda)=\frac{Q}{2 \pi \sigma^{2}} \frac{\sqrt{\left(\lambda_{\max }-\lambda\right)\left(\lambda_{\min }-\lambda\right)}}{\lambda} \\
& \lambda_{\text {max } m_{\text {min }}}=\sigma^{2}\left(1 \pm \sqrt{\frac{1}{Q}}\right)^{2}
\end{aligned}
$$

- Sample correlation matrices can be filtered to remove this noise
- The reconstructed matrix is then used in portfolio optimization

Random Matrix Theory

 Marcenko-Pastur Distributions- Random matrix with normal distribution; $\mathrm{N}=1000, \mathrm{~T}=4000$
- Random matrix wit'h norrnal distribution; $\mathrm{N}=250, \mathrm{~T}=1000$
- Random matrix with normal distribution; $\mathrm{N}=50, \mathrm{~T}=200$

Random Matrix Theory

 Marcenko-Pastur Distributions- Random malrix witún normal distribution; $\mathrm{N}=1000, \mathrm{~T}=4000$
- Random matrix with normal distribution; $\mathrm{N}=250, \mathrm{~T}=1000$
- Random matrix with normal distribution; $\mathrm{N}=50, \mathrm{~T}=200$

Random Matrix Theory

 Marcenko-Pastur Distributions- Random malrix witún normal distribution; $N=1000, T=4000$
- Random matrix wit'h norrnal distribution; $\mathrm{N}=250, \mathrm{~T}=1000$
- Random matrix with normal distribution; $\mathrm{N}=50, \mathrm{~T}=200$

Random Matrix Theory

 Fitting the Null Hypothesis- Daily S\&P 500; N=384, $\mathrm{T}=1200$
- Daily S\&:P 500 sulbset;; $\mathrm{N}=75, \mathrm{~T}=200$
- Shufifled S\&:P 500; N=75, $T=200$

$$
\begin{aligned}
& Q=2.072958 \\
& \sigma=0.8152044
\end{aligned}
$$

Eigenvalue Distribution

Random Matrix Theory

 Fitting the Null Hypothesis- Daily S8:P 500; N=38-1, $T=1200$
- Daily S\&P 500 subset; $\mathrm{N}=75, \mathrm{~T}=200$
- Shulfiled S\&:P 500; $\mathrm{N}=75, \mathrm{~T}=200$

$$
\begin{aligned}
& \mathrm{Q}=1.768204 \\
& \sigma=0.6321195
\end{aligned}
$$

Eigenvalue Distribution

Random Matrix Theory

Fitting the Null Hypothesis

- Daily S8:P 500; $N=38$ $T=1200$
- Daily S8.P 500 subset; $\mathrm{N}=75, \mathrm{~T}=200$
- Shuffiled S\&P 500; N=75, T=200

$$
\begin{aligned}
& Q=2.514132 \\
& \sigma=1.019011
\end{aligned}
$$

Eigenvalue Distribution

Shrinkage Estimation

- James-Stein revealed that a global mean exists
- Shrinking samples toward a global mean improves accuracy of estimation
- This can be applied to covariance matrices

Shrinkage Estimation

 What is the global mean?- The true mean is unknown
- Many candidates exist for covariance
- Identity matrix
- Constant correlation matrix
- Biased estimator (e.g. Barra)

Shrinkage Estimation Shrinkage Intensity

Change in optimal shrinkage constant

- Use a single value or calculate per iteration
- Ledoit \& Wolf propose optimal coefficient

$$
\begin{aligned}
& \alpha=\frac{\kappa}{T} \\
& \kappa=\frac{\pi-\rho}{\gamma}
\end{aligned}
$$

Filtering Correlation Matrices

RMT reconstructs correlation matrix from the empirical correlation matrix by replacing all
eigenvalues in noise part of spectrum with their mean

Shrinkage estimation takes a weighted average between the sample covariance and a global mean using a calculated shrinkage constant

Does It Work?

- How do you measure effectiveness?
- Again, two approaches
- Kullback-Leibler distance
- Out of sample portfolio returns
-Which will you believe?

Kullback-Leibler Distance

- KL distance measures the entropy between two probability density functions
- Not a true distance - but still useful!
- Triangle inequality is not satisfied
- Not symmetric
- Can measure information content and stability

Kullback-Leibler Distance

Theoretical Limit

Kullback-Leibler Distance

Empirical Results

Portfolio Performance

- Minimum variance

SPX random subset (100 assets) - 175 day window, 125 dates
sharpe.ratio annual.return annual.stdev

rmt	0.1911074	0.04646651	0.2431435
shrink	-0.5547973	-0.12035726	0.2169392
shrink.m	0.6403425	0.23386712	0.3652219
hybrid	-0.1934593	-0.04509580	0.2331023
raw.sample	-0.5535997	-0.15960243	0.2882993
market	0.3956911	0.13857861	0.3502192

SPX random subset (100 assets) - 125 day window, 175 dates
sharpe.ratio annual.return annual.stdev
rmt $-0.73633608 \quad-0.20746138 \quad 0.2817482$
shrink $-0.83450696 \quad-0.24169547 \quad 0.2896267$
shrink.m $\quad 0.09709427 \quad 0.04461285 \quad 0.4594797$
hybrid $-0.69065240 \quad-0.18980906 \quad 0.2748257$
raw.sample 0.36170223 0.17826057 0.4928379
market
$-0.06505888 \quad-0.02908206 \quad 0.4470114$

Portfolio Performance

Minimum variance optimization

Reconcillation

- Is there a connection between the theories?
- Examine eigenvalue distributions
-What about a hybrid approach?
-What about other eigenvalues?

Reconciliation

RMT replaces 'noisy' eigenvalues with average value

Reconciliation

Shrinkage scales eigenvalues towards a single value

Reconciliation

Eigenvalue distributions

- The eigenvalue of the global mean is in the noise part of the RMT spectrum!
- Both methods reduce noise by averaging out noisy eigenvalues
- Difference is in execution
- Hybrid approach has no benefit

References

- Laurent Laloux and Pierre Cizeau and Jean-Philippe Bouchaud and Marc Potters, Random matrix theory and financial correlations, 1999
- M. Potters, J.P. Bouchaud, L. Laloux, Financial Applications of Random Matrix Theory: Old Laces and New Pieces, 2005
- M. Tumminello, F. Lillo, R. N. Mantegna, Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance, Acta Phys. Pol. B 38 (13), 4079-4088, 2007
- Olivier Ledoit \& Michael Wolf, Honey, I Shrunk the Sample Covariance Matrix, Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra, 2003
- Olivier Ledoit \& Michael Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December 2003

End

- All images were generated by using Tawny (written by me)
- Download Tawny from CRAN
- htips://nurometic.com
- b_rowe@ml.com or r@nurometic.com

