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In vivo multi-electrodes recordings from
insects

“From the outside” the neuronal activity appears as brief
electrical impulses: the action potentials or spikes.

Left, the brain and the recording probe with 16 electrodes
(bright spots). Width of one probe shank: 80 µm. Right, 1
sec of raw data from 4 electrodes. The local extrema are
the action potentials.
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Spike trains

After a rather heavy pre-processing stage called spike
sorting spike trains are obtained.
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Studying spike trains per se

I A central working hypothesis of systems
neuroscience is that action potential or spike
occurrence times, as opposed to spike waveforms,
are the sole information carrier between brain
regions.

I This hypothesis legitimates and leads to the study of
spike trains per se.

I It also encourages the development of models whose
goal is to predict the probability of occurrence of a
spike at a given time, without necessarily considering
the biophysical spike generation mechanisms.
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Spike trains are not Poisson processes

The “raw data” of one bursty neuron of the cockroach
antennal lobe. 1 minute of spontaneous activity.
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Spike trains are not Renewal processes

Some “renewal tests” applied to the previous data.
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A counting process formalism (1)

Probabilists and Statisticians working on series of events
whose only (or most prominent) feature is there
occurrence time (car accidents, earthquakes) use a
formalism based on the following three quantities
(Brillinger, 1988, Biol Cybern 59:189).

I Counting Process: For points {tj} randomly scattered
along a line, the counting process N(t) gives the
number of points observed in the interval (0, t ]:

N(t) = ]{tj with 0 < tj ≤ t}

where ] stands for the cardinality (number of
elements) of a set.
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A counting process formalism (2)

I History: The history, Ht , consists of the variates
determined up to and including time t that are
necessary to describe the evolution of the counting
process.

I Conditional Intensity: For the process N and history
Ht , the conditional intensity at time t is defined as:

λ(t | Ht ) = lim
h↓0

Prob{event ∈ (t , t + h] | Ht}
h

for small h one has the interpretation:

Prob{event ∈ (t , t + h] | Ht} ≈ λ(t | Ht ) h
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Goodness of fit tests for counting processes

I All goodness of fit tests derive from a mapping or a
“time transformation” of the observed process
realization.

I Namely one introduces the integrated conditional
intensity :

Λ(t) =

∫ t

0
λ(u | Hu) du

I If Λ is correct it is not hard to show that the process
defined by :

{t1, . . . , tn} 7→ {Λ(t1), . . . ,Λ(tn)}

is a Poisson process with rate 1.
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Time transformation illustrated

An illustration with simulated data.
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A goodness of fit test based on Donsker’s
theorem

I Y Ogata (1988, JASA, 83:9) introduced several
procedures testing the time transformed event
sequence against the uniform Poisson hypothesis.

I We propose an additional test built as follows :

Xj = Λ(tj+1)− Λ(tj)− 1
Sm =

∑m
j=1 Xj

Wn(t) = Sbntc/
√

n

I Donsker’s theorem (Billingsley, 1999, pp 86-91)
states that if Λ is correct then Wn converges weakly
to a standard Wiener process.

I We therefore test if the observed Wn is within the
tight confidence bands obtained by Kendall et al
(2007, Statist Comput 17:1) for standard Wiener
processes.
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Illustration of the proposed test

The proposed test applied to the simulated data. The
boundaries have the form: f (x ; a,b) = a + b

√
x .
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Where Are We?

I We are now in the fairly unusual situation (from the
neuroscientist’s viewpoint) of knowing how to show
that the model we entertain is wrong without having
an explicit expression for this model...

I We need a way to find candidates for the CI:
λ(t | Ht ).
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What Do We “Put” in Ht?

I It is common to summarize the stationary discharge
of a neuron by its inter-spike interval (ISI) histogram.

I If the latter histogram is not a pure decreasing
mono-exponential, that implies that λ(t | Ht ) will at
least depend on the elapsed time since the last
spike: t − tl .

I For the real data we saw previously we also expect
at least a dependence on the length of the previous
inter spike interval, isi1. We would then have:

λ(t | Ht ) = λ(t − tl , isi1)
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What About The Functional Form?

I We haven’t even started yet and we are already
considering a function of at least 2 variables:
t − tl , isi1. What about its functional form?

I Following Brillinger (1988) we discretize our time axis
into bins of size h small enough to have at most 1
spike per bin.

I We are then lead to a binomial regression problem.
I For analytical and computational convenience we are

going to use the logistic transform:

log
( λ(t − tl , isi1) h

1− λ(t − tl , isi1) h
)

= η(t − tl , isi1)
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Smoothing spline

I Since cellular biophysics does not provide much
guidance on how to build η(t − tl , isi1) we have
chosen to use the nonparametric smoothing spline
approach implemented in the gss package.

I η(t − tl , isi1) is then uniquely decomposed as :

η(t − tl , isi1) = η∅ + ηl(tt − l) + η1(isi1) + ηl,1(t − tl , isi1)

I Where for instance:∫
η1(u)du = 0

the integral being evaluated on the definition domain
of the variable isi1.
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Application to real data

We fitted to the last 30 s of the data set the following
additive model:

event ∼ 9
√

t − tl + 10
√

isi1 .
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The tests applied to the first 30 s
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The functional forms



STAR

Pouzat et al

Spike trains

Counting process

Goodness of fit

Smoothing spline

Conclusions

Conclusions

I We have now a procedure to fit actual spike trains in
a routine fashion.

I We can pass challenging goodness of fit tests.
I The full set of functions required by the analysis we

just described is available in the STAR (Spike Train
Analysis with R) package on CRAN.
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