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We consider an observational study with n observations. For each unit i

Yi = outcome Ti = treatment indicator X i = covariates

ESTIMATION GOAL: the treatment effect

TEi = Yi(Ti = 1) − Yi(Ti = 0) = Yi(1) − Yi(0)

but Yi(0) is not observed. For the treated unit i with covariates Xi, it is natural

to look for another unit j in the sample for which Yj(0) is observed and such

that Xj ≃ X i

MATCHING GOAL: for each treated unit i find the “twin” control unit j (i.e. with

Xj ≃ Xi) in order to reduce bias in the estimation of TEi
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� MatchIt : (pscore, mahalanobis, etc)

� Matching : (genetic matching, pscore, etc)

� optmatch : (full optimal matching)

� rrp : (random recursive partitioning)

� arm : (single nearest neighbour)

� SpectralGEM : (spectral graph theory)

� analogue : (analogue matching, nearest neighbour)

� PSAgraphics (diagnotic)

� RItools (diagnostic)
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Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal

inference, with unexplored powerful properties. CEM is as simple as
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Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal

inference, with unexplored powerful properties. CEM is as simple as

1. Temporarily coarsen X as much as you’re willing (e.g., for education:

grade school, high school, college, graduate);
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Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal

inference, with unexplored powerful properties. CEM is as simple as

1. Temporarily coarsen X as much as you’re willing (e.g., for education:

grade school, high school, college, graduate);

2. Perform exact matching on the coarsened data C(X), sort observations

into strata and prune any stratum with 0 treated or 0 control units, i.e. set

weight=0 for pruned observations and CEM weights to matched units;
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Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal

inference, with unexplored powerful properties. CEM is as simple as

1. Temporarily coarsen X as much as you’re willing (e.g., for education:

grade school, high school, college, graduate);

2. Perform exact matching on the coarsened data C(X), sort observations

into strata and prune any stratum with 0 treated or 0 control units, i.e. set

weight=0 for pruned observations and CEM weights to matched units;

3. use the original uncoarsened data X (with appropriate weights) in your

analysis, except those units pruned.

Maximum imbalance is controlled ex-ante by the choice of coarsening
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COARSEN THE DATA X INTO C(X) 

 

 

DO EXACT MATCHING ON   

COARSENED DATA C(X) 
 

CEM weights 

 

pass original uncoarsened data X to the analysis stage 

ORIGINAL 

DATA X 

THE ANALYSIS STAGE 

 

lm 

 

glm 

 

randomForest 

 

coxph 

 

etc 
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cem offers standard 1-dim as well as a new multidimensional measure of imbalance L1 ∈ [0, 1]:
the distance between multidimensional histograms of the distributions of treated and control units

R> library(cem)

R> data(LL) # The Lalonde(1986) benchmark data

R> # initial imbalance

R> imb <- imbalance(LL$treated,LL,drop=c("re78","treated"))

R> imb

Multivariate Imbalance Measure: L1=0.735

Percentage of local common support: LCS=17.8%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.792038e-01 (diff) 4.705882e-03 0 1 0.00000 -1.0000 -6.0000

education 1.922361e-01 (diff) 9.811844e-02 1 0 1.00000 1.0000 2.0000

black 1.346801e-03 (diff) 1.346801e-03 0 0 0.00000 0.0000 0.0000

married 1.070311e-02 (diff) 1.070311e-02 0 0 0.00000 0.0000 0.0000

nodegree -8.347792e-02 (diff) 8.347792e-02 0 -1 0.00000 0.0000 0.0000

re74 -1.014862e+02 (diff) 5.551115e-17 0 0 69.73096 584.9160 -2139.0195

re75 3.941545e+01 (diff) 5.551115e-17 0 0 294.18457 660.6865 490.3945

hispanic -1.866508e-02 (diff) 1.866508e-02 0 0 0.00000 0.0000 0.0000

u74 -2.009903e-02 (diff) 2.009903e-02 0 0 0.00000 0.0000 0.0000

u75 -4.508616e-02 (diff) 4.508616e-02 0 0 0.00000 0.0000 0.0000
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After matching with CEM

R> mat <- cem("treated", LL, drop="re78",L1.breaks=imb$L1$breaks)

R> mat

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Multivariate Imbalance Measure: L1=0.432

Percentage of local common support: LCS=44.7%

Univariate Imbalance Measures:

statistic type L1 min 25% 50% 75% max

age 1.862046e-01 (diff) 5.551115e-17 0 0 0.0000 1.00000 1.000

education 1.022495e-02 (diff) 1.022495e-02 0 0 0.0000 0.00000 0.000

black -1.110223e-16 (diff) 6.245005e-17 0 0 0.0000 0.00000 0.000

married 0.000000e+00 (diff) 5.898060e-17 0 0 0.0000 0.00000 0.000

nodegree -1.110223e-16 (diff) 5.551115e-17 0 0 0.0000 0.00000 0.000

re74 7.197514e+00 (diff) 5.551115e-17 0 0 0.0000 -70.85522 416.416

re75 1.220698e+01 (diff) 5.551115e-17 0 0 234.4843 140.79126 -852.252

hispanic 0.000000e+00 (diff) 5.551115e-17 0 0 0.0000 0.00000 0.000

u74 0.000000e+00 (diff) 2.775558e-17 0 0 0.0000 0.00000 0.000

u75 0.000000e+00 (diff) 5.551115e-17 0 0 0.0000 0.00000 0.000
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The choice of coarsening affects the matching solution. Due to high computationally efficiency of
cem, the function relax.cem allows for automatic coarsening relaxations
R> relax.cem(mat,LL)

Executing 42 different relaxations
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Pre−relax: 163 matched (54.9 %)
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ATT estimation on the matched data only
R> att(mat, re78 ~ treated, LL) -> TE

R> TE

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model on CEM matched data:

SATT point estimate: 550.962564 (p.value=0.368242)

95% conf. interval: [-647.777701, 1749.702830]

ATT estimation on all treated observations via extrapolation
R> att(mat, re78 ~ treated, LL, extrapolate=TRUE)

G0 G1

All 425 297

Matched 222 163

Unmatched 203 134

Linear regression model with extrapolation:

SATT point estimate: 1290.247549 (p.value=0.062168)

95% conf. interval: [391.886467, 2188.608631]

The distribution of the treatment effect accross CEM strata can be further visualized
R> plot(TE,mat,LL,vars=c("re75","re74","education","age","hispanic"))
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Linear regression model on CEM matched data
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For the latest version of the manuscript, R and Stata software, visit

http://GKing.Harvard.edu/cem

http://GKing.Harvard.edu/cem
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