

S.M. lacus (Univ. of Milan) & G. King (Harvard Univ.) & G. Porro (Univ. of Trieste)

Rennes, useR! 2009, July 8th - 10th

The problem of matching

Estimation of TE

Matching solutions in R (incomplete list)

CEM Overview

Infos

We consider an observational study with n observations. For each unit i

 $Y_i =$ outcome $T_i =$ treatment indicator $X_i =$ covariates

ESTIMATION GOAL: the treatment effect

 $TE_i = Y_i(T_i = 1) - Y_i(T_i = 0) = Y_i(1) - Y_i(0)$

but $Y_i(0)$ is not observed. For the treated unit i with covariates X_i , it is natural to look for another unit j in the sample for which $Y_j(0)$ is observed and such that $\underline{X}_j \simeq \underline{X}_i$

MATCHING GOAL: for each treated unit *i* find the "twin" control unit *j* (i.e. with $\underline{X}_i \simeq \underline{X}_i$) in order to reduce bias in the estimation of TE_i

Matching solutions in R (incomplete list)

Estimation of TE

Matching solutions in R (incomplete list)

CEM Overview

Infos

- MatchIt : (pscore, mahalanobis, etc)
- Matching : (genetic matching, pscore, etc)
- optmatch : (full optimal matching)
- rrp : (random recursive partitioning)
- arm : (single nearest neighbour)
- SpectralGEM : (spectral graph theory)
- analogue : (analogue matching, nearest neighbour)
- PSAgraphics (diagnotic)
- RItools (diagnostic)

Estimation of TE	
Matching solutions in	R
(incomplete list)	

CEM Overview

Infos

Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal inference, with unexplored powerful properties. CEM is as simple as

Estimation of TE		
Matching solutions	in	R
(incomplete list)		

CEM Overview

Infos

Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal inference, with unexplored powerful properties. CEM is as simple as

1. Temporarily *coarsen* X as much as you're willing (e.g., for education: grade school, high school, college, graduate);

Estimation of TE Matching solutions in R (incomplete list)

CEM Overview

Infos

Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal inference, with unexplored powerful properties. CEM is as simple as

- 1. Temporarily *coarsen* X as much as you're willing (e.g., for education: grade school, high school, college, graduate);
- 2. Perform *exact matching* on the coarsened data C(X), sort observations into strata and prune any stratum with 0 treated or 0 control units, i.e. set weight=0 for pruned observations and CEM weights to matched units;

Estimation of TE Matching solutions in R (incomplete list)

CEM Overview

Infos

Coarsened Exact Matching (CEM), is a simple (and ancient) method of causal inference, with unexplored powerful properties. CEM is as simple as

- 1. Temporarily *coarsen* X as much as you're willing (e.g., for education: grade school, high school, college, graduate);
- 2. Perform *exact matching* on the coarsened data C(X), sort observations into strata and prune any stratum with 0 treated or 0 control units, i.e. set weight=0 for pruned observations and CEM weights to matched units;
- 3. use the *original uncoarsened* data X (with appropriate weights) in your analysis, except those units pruned.

Maximum imbalance is controlled ex-ante by the choice of coarsening

cem offers standard 1-dim as well as a new multidimensional measure of imbalance $\mathcal{L}_1 \in [0, 1]$: the distance between multidimensional histograms of the distributions of treated and control units

```
R> library(cem)
R> data(LL) # The Lalonde(1986) benchmark data
R> # initial imbalance
R> imb <- imbalance(LL$treated,LL,drop=c("re78","treated"))
R> imb
```

Multivariate Imbalance Measure: L1=0.735 Percentage of local common support: LCS=17.8%

Univariate Imbalance Measures:

	statistic	type	L1	min	25%	50%	75%	max
age	1.792038e-01	(diff)	4.705882e-03	0	1	0.00000	-1.0000	-6.0000
education	1.922361e-01	(diff)	9.811844e-02	1	0	1.00000	1.0000	2.0000
black	1.346801e-03	(diff)	1.346801e-03	0	0	0.00000	0.0000	0.0000
married	1.070311e-02	(diff)	1.070311e-02	0	0	0.00000	0.0000	0.0000
nodegree	-8.347792e-02	(diff)	8.347792e-02	0	-1	0.00000	0.0000	0.0000
re74	-1.014862e+02	(diff)	5.551115e-17	0	0	69.73096	584.9160	-2139.0195
re75	3.941545e+01	(diff)	5.551115e-17	0	0	294.18457	660.6865	490.3945
hispanic	-1.866508e-02	(diff)	1.866508e-02	0	0	0.00000	0.0000	0.0000
u74	-2.009903e-02	(diff)	2.009903e-02	0	0	0.00000	0.0000	0.0000
u75	-4.508616e-02	(diff)	4.508616e-02	0	0	0.00000	0.0000	0.0000

CEM package

After matching with CEM

Multivariate Imbalance Measure: L1=0.432 Percentage of local common support: LCS=44.7%

Univariate Imbalance Measures:

	statistic	type	L1	min	25%	50%	75%	max
age	1.862046e-01	(diff)	5.551115e-17	0	0	0.0000	1.00000	1.000
education	1.022495e-02	(diff)	1.022495e-02	0	0	0.0000	0.00000	0.000
black	-1.110223e-16	(diff)	6.245005e-17	0	0	0.0000	0.00000	0.000
married	0.000000e+00	(diff)	5.898060e-17	0	0	0.0000	0.00000	0.000
nodegree	-1.110223e-16	(diff)	5.551115e-17	0	0	0.0000	0.00000	0.000
re74	7.197514e+00	(diff)	5.551115e-17	0	0	0.0000	-70.85522	416.416
re75	1.220698e+01	(diff)	5.551115e-17	0	0	234.4843	140.79126	-852.252
hispanic	0.000000e+00	(diff)	5.551115e-17	0	0	0.0000	0.00000	0.000
u74	0.000000e+00	(diff)	2.775558e-17	0	0	0.0000	0.00000	0.000
u75	0.000000e+00	(diff)	5.551115e-17	0	0	0.0000	0.00000	0.000

The choice of coarsening affects the matching solution. Due to high computationally efficiency of cem, the function relax.cem allows for automatic coarsening relaxations

R> relax.cem(mat,LL)
Executing 42 different relaxations
.....[20%]....[40%]....[60%]....[80%]....[100%]

Pre-relax: 163 matched (54.9 %)

ATT estimation on the matched data only

Linear regression model on CEM matched data:

SATT point estimate: 550.962564 (p.value=0.368242) 95% conf. interval: [-647.777701, 1749.702830]

ATT estimation on all treated observations via extrapolation

R> att(mat, re78 ~ treated, LL, extrapolate=TRUE)

G0G1All425297Matched222163Unmatched203134

Linear regression model with extrapolation:

SATT point estimate: 1290.247549 (p.value=0.062168) 95% conf. interval: [391.886467, 2188.608631]

The distribution of the treatment effect accross CEM strata can be further visualized

R> plot(TE,mat,LL,vars=c("re75","re74","education","age","hispanic"))

ATT estimation and visualization

Linear regression model on CEM matched data

10/11

For more information

Estimation of TE Matching solutions in R (incomplete list)

CEM Overview

Infos

For the latest version of the manuscript, R and Stata software, visit

http://GKing.Harvard.edu/cem

