
20090711 Nash / Varadhan 1

Updating & Improving optim():
Unifying optimization algorithms in R for

smooth, nonlinear problems

John C. Nash
University of Ottawa, Telfer School of Management

Ottawa, Canada

Ravi Varadhan
The Center on Aging and Health,

Johns Hopkins University, Baltimore, USA.

20090711 Nash / Varadhan 2

1. Our work addresses 4 different areas: (a) unification of existing tools (optimx), (b) updating
optim, (c) providing guidance to useRs on choosign appropriate algorithms, as well as on problem
formulation, scaling etc. (GUIDED), and (d) benchmarking algorithms and comparative
performance evaluation (runopt)�

2. Given that unification of optimziation tools (for box-constrained problems) is the main theme for
our talk, our focus is primarily on optimx(). The main question(s) to address is (are): why is
optimx() needed? How can useRs benefit from it? We should demonstrate, with a couple of
examples, why optimx() is the "go-to" place for smooth, box-constrained nonlinear optimization.

3. After demonstrating the utility of optimx(), we can sketch our plans for the future, i.e. how we are
planning to address 1(b) - 1(d).

4. Finally, we can close with a slide or two soliciting suggestions/ideas on how to address some
specific critical issues with regards to 1(a) - 1(d).

20090711 Nash / Varadhan 3

Why?
� R offers a very powerful and convenient

interface to many statistical tools

� Including optimization, nonlinear least squares,
and nonlinear equations

BUT ...

� Too many, very similar tools

� “Old” tools or at least old implementations

� Confusion over which to use. Which is “better”?

20090711 Nash / Varadhan 4

e.g. variable metric method

� optim(..., method='BFGS')�
− Nash (1990) Pascal --> C (B. Ripley), no bounds (but ...)�

� optim(..., method='L-BFGS-B')�
− Byrd _et. al._ (1995), not same algorithm, bounds

� ucminf()�
− Nielsen/Mortensen. Seems to be Fortran VM code.

And for good measure, some new ones --

� Rvmmin0 and Rvmminb
− my own “all R” versions without and with bounds

20090711 Nash / Varadhan 5

A (partial?) list

optim == Nelder-Mead, BFGS, L-BFGS-B, CG
(with FR, PR, BS variants), SANN

nlm, nlminb, powell, ucminf, MaxLik, BB::spg

trust, cleversearch, DEoptim, rgenoud

Rdonlp2, ConstrOptim

and many local choices

20090711 Nash / Varadhan 6

Why so many choices?
� Details can be important

� Problems are often “nasty”
� scale varies hugely across parameter space

� singularity of Hessian

� Problems vary in size and complexity
� scaling

� constraints

� availability of derivative information

� Human nature

20090711 Nash / Varadhan 7

Our Objectives
� unify optimization tools in R

� priority: smooth, nonlinear, box-constrained optimization
problems;

� provide "guidance" to users (automated?)�
� choosing appropriate tools (inc. nls etc. if indicated)�

� setting up function and call

� need evidence as basis for advice (runopt)�

� update/extend R optimization methods & tools
� especially tools / interfaces

20090711 Nash / Varadhan 8

optimx() Illustration

� Petran-Ratkowsky problem **

− difficulties with convergence of nls and optim

− Which method to use?

− Quick and dirty way to try different methods on
possibly difficult problem

** Marie Laure Delignette-Muller

ourres<-optimx(par=c(10,0.01,4,10),fn=RSS,method=c('BFGS','spg','nlm')) �

ourres

par fvalues method
1 10.05291619, 0.04146914, 4.15651522, 9.83597299 0 .02468974 BFGS
2 16.29893736, 0.03223693, 4.16816366, 9.84166213 0 .02465116 nlm

20090711 Nash / Varadhan 9

Another example
ans<-optimx(start,fn=broydt.f,gr= broydt.g,
method=c('nlm','nlminb','BFGS',"Nelder","CG","ucminf","SANN","L-BFGS-B","spg"))�

> ans
par

5 4, 4, 4, 4, 4, 4
6 5.2260723, 1.5111481, -0.4172068, -0.9248976, -0. 8926013, -0.5756397
7 5.2260677, 1.5111560, -0.4172003, -0.9248946, -0. 8926011, -0.5756397
1 5.2260728, 1.5111500, -0.4172051, -0.9248977, -0. 8926029, -0.5756406
2 5.2260730, 1.5111498, -0.4172052, -0.9248978, -0. 8926030, -0.5756406
4 5.2260730, 1.5111498, -0.4172052, -0.9248978, -0. 8926030, -0.5756406
3 5.2260730, 1.5111498, -0.4172052, -0.9248978, -0. 8926030, -0.5756406

fvalues method fns grs itns conv KKT1 KKT2
5 206 SANN 10000 NA NULL 0 FALSE T RUE
6 6.750998e-11 L-BFGS-B 47 47 NULL 0 FALSE T RUE
7 6.154014e-11 spg 158 NA 143 0 FALSE T RUE
1 7.022921e-14 nlm NA NA 51 0 TRUE T RUE
2 8.030451e-16 nlminb 53 43 42 0 TRUE T RUE
4 8.515444e-18 ucminf 44 44 NULL 0 TRUE T RUE
3 2.531347e-19 BFGS 109 51 NULL 0 TRUE T RUE

20090711 Nash / Varadhan 10

optimx()� outline

� Checks
� parameter structure, and, if supplied, bounds, gradients,

and Hessians

� methods suitable to inputs e.g., bounds

� Methods – multiple via a list

� Post solution analysis – KKT conditions

� Attempt to make things “nice” for user while
keeping optim()-style calling syntax

20090711 Nash / Varadhan 11

Niceties

� control$maximize – if TRUE maximizes
� avoids “fiddle” of fnscale = -1

� control$follow.on – if TRUE use last set of
parameters of one method as start in next

� allows polyalgorithms tailored to needs

� KKT post-solution analysis
� Are we “there” yet?

� “Termination” not “convergence”

20090711 Nash / Varadhan 12

Possibilities?

� Hooks for calling local R source methods
� allows bleeding-edge tools to be applied

� allows local modificaitons for special purposes, such as
special constraints or instrumentation of method

� helps standardize calling syntax (inc. our own methods!)�

� already have prototype working�

� Include other tools – trust?, cleversearch?

� Include “new” tools (Rcgmin, BOBYQA)�

20090711 Nash / Varadhan 13

Related activity -> other goals
� Wiki to share work in progress – ask for access

� R-forge “OptimizeR” for packages that “work”

� funcheck / funtest packages (already working)�

� same functionality, depending on function & file names

� “standardized” test file structure

� NISTnls functions partially converted to this structure

� supports optimx() with common R code where suited

� runopt() - for performance data (alpha stage)�
� MUST be simple, and gather date from many machines

� issues of platform / problem / method characteristics

20090711 Nash / Varadhan 14

Purpose of runopt()�

� Build base on which to give advice
� Automatic gathering / Public data repository

� Make tools more consistent and easier to use

� Provide a framework for continuous
improvement

� Easier/unified interface to existing tools

� But without causing upset to legacy applications

� Gradually add interface features

� Look for tools that will help users get good results more
easily e.g., Automatic Differentiation for gradient function

20090711 Nash / Varadhan 15

Issues – UseR input?
� Scaling – via parscale or explicit in

R code?
� parscale may impose inefficiencies / error-

prone

� Can tools help generate scaled code
automatically?

� Mandatory bounds (box-
constraints)�

� Force user to think of the scaling and
“reality” -- avoids inadmissible answers

� “Number of grain elevators in
Saskatchewan”

20090711 Nash / Varadhan 16

Issues – UseR input (2) ?

� Development & tuning of a 'GUIDED' method
� GUI programming / Can it be simply scripted?

� Starting values

� Links to nls etc.– focus on problems, not methods

� More templates and examples

� runopt() -- as mentioned, need participants

� Fortran/C/etc. -- less ad hoc, more review

� Feedback and continuous improvement

� Derivatives / automate function building

20090711 Nash / Varadhan 17

Progress report

� optimx() is at beta stage

� runopt() at alpha
� But we need more, and better checked, test files

� And we need to ensure automated data gathering is
bullet-proof

� Profiling still in early stages

� Documentation and facilities for allowing data to be
analysed – and results reported

� funcheck and funtest – alpha/beta boundary

20090711 Nash / Varadhan 18

Progress report (2)�

� Wiki up and running and some external
participations (reminder: ask for access)�

� OptimizeR is up, but so far mostly pre-existing
packages have been loaded

� Optimx beta up; runopt, etc. “soon”

� Some interaction with others on ideas relating
to Automatic and Symbolic Differentiation

� Still a long way to go to get easy-to-use tools

20090711 Nash / Varadhan 19

Progress report (3)�
� Getting new Powell BOBYQA to run with R

� Fortran 77 code, Uses local printing, lots of local storage

� Help welcome! Want to build general “how to”.

� Several all-R codes running in alpha state

� “GUIDED” tools outlined, but not programmed

� So far have not done much re:
� ensuring underlying apps. (nnet, arima, etc.) can benefit

� generalizing to include nls etc. i.e., more problem focus

20090711 Nash / Varadhan 20

THANKS!

Contact info:
nashjc _ at _ uottawa.ca

RVaradhan _ at _ jhmi.edu

Questions?

20090711 Nash / Varadhan 21

Extra topics

The following slides are intended to augment the
brief exposition in the main presentation.

20090711 Nash / Varadhan 22

Scaling and why it “hurts”

hobbs.r: 12 data points to be fitted to
y ~ x1/(1+x2*exp(-x3*t)) (3 parameter logistic)�

Function base = 23520.58 at 1 1 1
Percent changes for 1 % change in each parameter are 0.03503 0.00020
0.00046

Function base = 2.587542 at 196.5079544 49.1138533 0.3133611
Percent changes for 1 % change in each parameter are 94.117 39.695 391.27
Hessian eigenvalues -- unscaled function
At start: 41.618914 16.635191 -3.700846 (INDEFINITE) Ratio -11.24579
At solution: 2.047414e+06 4.252238e-01 4.376540e-03 Ratio
467815596

20090711 Nash / Varadhan 23

“Simple” rescaling

y ~ 100 x1/(1+10 x2*exp(-0.1 x3*t))

Hessian eigenvalues -- scaled function
At start: 223294.0 .5599862 -204.9109 (INDEFINITE) Ratio
398749.1
At solution: 33859.37019 76.55200 14.70142 Ratio
2303.137

Function base = 23520.58 at [1] 0.01 0.10 10.00
Percent changes for 1 % change in each parameter are 0.03503 0.00020 0.00046

Function base = 2.587543 at 1.965080 4.911385 3.133611
Percent changes for 1 % change in each parameter are 94.112 39.698 391.26

No change. This is as it should be!

20090711 Nash / Varadhan 24

Scaling in optim() ?

� parscale and fnscale (<0 maximizes function)�

� Quite a lot of overhead in code
� argument passing, many multiplications and divisions

� adds to work of package builders

� more difficult to make optimx call other minimizers

� Should we not get the user to scale his/her function?

� How can we help with such scaling?

� OR ... put the scaling in functions explicitly
� Still need to provide help

20090711 Nash / Varadhan 25

Guiding the user

� Scale so solution has parameters in [1,10] in
magnitude

� Provide bounds (even if we don't use them)�

� avoid nasties (negative grain elevators in
Saskatchewan)�

� users almost always can get us within an order of
magnitude

� If derivatives available, provide them
� Make SURE they are correct (now part of optimx)�

� Important for dispersion information

20090711 Nash / Varadhan 26

The getting of wisdom
� runopt.R – a first try to get performance data

� Use scponly tool on server to allow uploads
� ssh keypairs, 1 for each “user”

� no shell functions, only scp

� build scp calls into runopt.R

� runopt.R set up to execute various tests
� many details still being developed

� Need to get machine/OS data

� Nice to get performance profiles

20090711 Nash / Varadhan 27

Performance profiles

� ref??

� example??

20090711 Nash / Varadhan 28

runopt() infrastructure

� Sets of test functions (with data)�

� name.R is file, name.xxx provides functions
xxx takes on

� f, res, jac, g, h, rsd, fgh, doc, setup, test

� function, residual, jacobian, gradient, hessian, residual
second derivatives, combined function+gradient+hessian,
documentation, setup, testing

� Not all functions for all test functions (some are not sums
of squares)�

� funcheck.R – test such files using numDeriv

20090711 Nash / Varadhan 29

funtest.R

� Similar to funcheck.R, but for cases where
functions have naming scheme other than that
in our “standard”, i.e., runopt() compatible, test
functions

� Intended to help users build functions

� Would like to extend to (G)UI that helps
construct the appropriate R file and calls

20090711 Nash / Varadhan 30

Methods in R code only

� C and Fortran may hide what is going on

� And are more difficult to “document”

� May win with eventual R compiler (??)�

� May already be fast enough, especially for
vectorized code

� BUT we need to test such ideas

20090711 Nash / Varadhan 31

All-R methods

� new Rcgmin with Yuan-Dai restart patch
� example timings

� Rvmmin – to test different line search strategies

� SNewton – safeguarded Newton method
� Should be “like” nlm, but ...

� xxxxxxb versions to handle bounds

� Important to provide extensive commentary if
we want to learn/improve

