
Loading data on demand

Thomas Lumley

Dept of Biostatistics,

University of Washington

R Core Development Team

useR — Rennes — 2009–7–9

Integrated database/statistics packages

Charlton Heston

brings SAS down

from Mt Sinai

Relational databases and R

Relational databases are the natural habitat of large data sets.

R has good interfaces: RJDBC, RODBC, R-DBI

No need to have database storage built in to R.

Use case: moderately large data

Data sets from national surveys or large cohort studies have

103–105 observations and 102–104 variables

Loading the entire data set into R is inconvenient, especially on

32-bit systems.

A single computation will typically use only 100–101 variables,

fits easily in memory.

Data entry and data management is easier in a relational

database.

Example: Behavioral Risk Factor Surveillance System, a tele-

phone survey of 450,000 individuals in US.

User interface

Goal: allow an object that wraps a database to be used in place

of a data frame

Can’t just write methods: model.frame doesn’t dispatch on the

data= argument, relies on internal structure of data frames.

Need to load data for relevant variables and then call methods

based on data frames.

Simple case

doSomething <- function(formula, database){

varlist <- paste(all.vars(formula), collapse=", ")

query <- paste("SELECT", varlist, "FROM", database$tablename)

dataframe <- dbGetQuery(database$connection, query)

now actually do Something

fitModel(formula, dataframe)

}

First construct a query to load all the variables you need, then

submit it to the database to get the data frame, then proceed

as usual.

Refinements: some variables may be in memory, not in the

database, we may need to define new variables, we may want

to wrap an existing set of code.

Wrapping existing code

Define a generic function to dispatch on the second (data)

argument

doSomething <- function(formula, data, ...){

UseMethod("doSomething", data)

}

and set the existing function as the default method

doSomething.database <- (formula, database, ...){

varlist <- paste(all.vars(formula), collapse=", ")

query <- paste("SELECT", varlist, "FROM", database$tablename)

dataframe <- dbGetQuery(database$connection, query)

now actually do Something

doSomething(formula, dataframe, ...)

}

Allowing variables in memory

To allow the function to pick up variables from memory, just

restrict the database query to variables that are in the database

dbvars <- names(dbGetQuery(conn, "select * from table limit 1"))

formulavars <- all.vars(formula)

varlist <- paste(intersect(formulavars, dbvars), collapse=", ")

[In practice we would find the list of names in the database first

and cache it in an R object]

Now model.frame() will automatically pick up variables in mem-

ory, unless they are masked by variables in the database table —

the same situation as for data frames.

Allowing updates

Three approaches:

• Write new variables into the database with SQL code: needs

permission, reference semantics, restricted to SQL syntax

• Create new variables in memory and save to the database:

needs permission, reference semantics, high network traffic

• Store the expressions and create new variables on data load:

wasted effort

Since data transfer will be the bottleneck, the third strategy is

not really a waste of effort.

Design

A database object stores the connection, table name, new
variable information

New variables are created with the update method

mydata <- update(mydata, avgchol = (chol1 + chol2)/2,

hibp = (systolic>140) | (diastolic>90))

• An expression can use variables in the database or previously
defined ones, but not simultaneously defined ones.

• Multiple update()s give a stack of lists of expressions
• Use all.vars going down the stack to find which variables to

query from the database
• Return up the stack, evaluating the expressions with eval()

and adding variables to the data frame

Implemented in survey, mitools packages, using R-DBI and
RODBC interfaces.

Wrapping existing code

Survey design objects contain metadata, and data frame in

$variables slot

Database-backed design objects have no $variables slot, contain

database connection information, inherit from survey design

objects.

Each method loads data into the $variables slot, calls NextMethod

to dispatch.

Wrapping existing code

> svymean

function (x, design, na.rm = FALSE, ...)

{

.svycheck(design)

UseMethod("svymean", design)

}

> survey:::svymean.DBIsvydesign

function (x, design, ...)

{

design$variables <- getvars(x, designdbconnection,

designdbtablename,

updates = design$updates)

NextMethod("svymean", design)

}

Subsets

Could add a subset argument, translated into a SQL WHERE

clause.

Need minor changes to convert R to SQL syntax: inorder

traversal of parsed syntax tree for R expression, emit SQL code.

> Rexpr<-quote(sex == "MALE" & state %in% c("MI","MO","ME","MA"))

> sqlexpr(Rexpr)

"(((sex==\"MALE\") AND (state IN (\"MI\",\"MO\",\"ME\",\"MA\"))))"

Not in packages at the moment.

Example: BRFSS

On 1Gb laptop, complete BRFSS data cannot be loaded

(450,000 records)

On any 32-bit system, BRFSS dataset is too big for convenient

use (≈ 1.5Gb in memory).

A few variables can easily be loaded.

With database-backed design using SQLite, overhead of data

loading is about 2 minutes and computer remains responsive.

BRFSS: health insurance by state, age

<35 35−50

50−65 65+

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

	Integrated database/statistics packages
	Relational databases and R
	Use case: moderately large data
	User interface
	Simple case
	Wrapping existing code
	Allowing variables in memory
	Allowing updates
	Design
	Wrapping existing code
	Subsets
	Example: BRFSS
	BRFSS: health insurance by state, age

