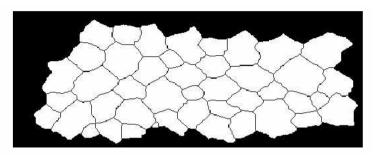
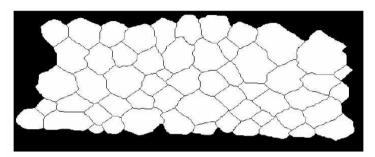


The fifth international conference useR! 2009

Proximity data visualization with h-plots

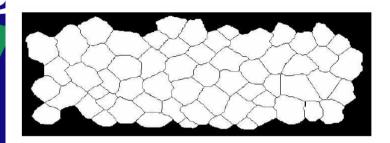
Irene Epifanio Dpt. Matemàtiques, Univ. Jaume I (SPAIN) epifanio@uji.es; http://www3.uji.es/~epifanio

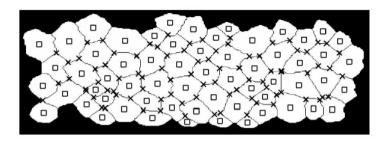



Outline

- Motivating problem
- Methodology
- Small-size examples
- Point patterns
- Conclusions

Motivating problem




In Ayala et al. 2006: to find groups corresponding with different morphologies of the corneal endothelia

Different dissimilarities (non-metric) between human corneal endothelia.

Motivating problem

Corneal endothelia described by bivariate point patterns (centroids and triple points).

Different dissimilarities (triangle inequality is not hold) between point patterns.

Methodology: h-plot

X data matrix, S covariance matrix: λ_1 , λ_2 largest eigenvalues, q_1 , q_2 unit eigenvectors:

$$H_2 = (\sqrt{\lambda_1}q_1, \sqrt{\lambda_2}q_2)$$

Rows h_i of matrix H_2 have properties:

- 1. The sample covariance s_{ji} between variables j and i is $h'_j h_i$, where ' indicates the transposition. Therefore, the sample variances s_{jj} are $||h_j||^2$.
- 2. The correlation between variables j and i is the cosine of the angle between h_j and h_i .
- 3. $||h_j h_i||^2 = s_{jj} + s_{ii} 2s_{ji}$, that is to say, the sample variance of the difference between variables j and i.

Methodology: h-plot

We do not have a classical data matrix, but a dissimilarity matrix, D: d_{ij} represents the dissimilarity from the object *i* to object *j*.

Asymmetric relationship $(d_{ij} \neq d_{ji})$: we can consider the variable measuring dissimilarity from j to other objects $(d_{j.})$ and the dissimilarity to j $(d_{.j})$.

With a symmetric dissimilarity $(d_{j} = d_{j})$: variable *j* represents dissimilarity with respect *j*.

Euclidean distance between h_j and h_i in h-plot is sample standard deviation of difference between variables d_i and d_i .

If these variables are similar, their difference, and therefore, its standard deviation will be small.

Comparison

- Classical Metric Multidimensional (cmdscale)
- Isomap (Tenenbaum et al., 2000)
- Kruskal's Non-metric Multidimensional Scaling (isoMDS) and Sammon's Non-Linear Mapping (sammon): Library MASS.
- Congruence coefficient (0-1): similarity of two configurations X and Y.

$$c(X,Y) = \frac{\sum_{i < j} d_{ij}(X) d_{ij}(Y)}{(\sum_{i < j} d_{ij}^2(X))^{1/2} (\sum_{i < j} d_{ij}^2(Y))^{1/2}}$$

1 is achieved if X and Y are perfectly similar geometrically (match by rigid motions and dilations).

Example 1

If triangle inequality is not hold, although d_{ij} is small, variables $d_{j.}$ and $d_{i.}$ can be very different, and the objects *i* and *j* should not be represented near.

	issimilarity matter	ix with number (or nours for the c	neapest mgmts.
	Madrid (MA)	Valencia (VL)	Moscow (MO)	St. Petersburg (SP)
Madrid	0	1	5	7
Valencia	1	0	10	12
Moscow	5	10	0	1.5
St. Petersburg	7	12	1.5	0

Dissimilarity matrix with number of hours for the cheapest flights.

		cmd	scale			isoN	1DS		5	sam	mon			ison	nap			h -	plot	
C.C.			984			0.9					81			0.9				0.9		
	MA	VL	MO	SP	MA	VL	MO	SP	MA	VL	MO	SP	MA	VL	MO	SP	MA	VL	MO	SP
MA	0	4.3	5.8	7.7	0	3.2	6.0	9.2	0	1.4	6.4	8.0	0	1.0	5.0	6.5	0	2.6	6.3	7.4
VL	4.3	0	10.1	12.0	3.2	0	9.2	12.4	1.4	0	7.8	9.4	1.0	0	6.0	7.5	2.6	0	8.9	9.9
MO	5.8	10.1	0	1.9	6.0	9.2	0	3.2	6.4	7.8	0	1.6	5.0	6.5	0	1.5	6.3	8.9	0	1.2
SP	7.7	12.0	1.9	0	9.2	12.4	3.2	0	8.0	9.4	1.6	0	6.5	7.5	1.5	0	7.4	9.9	1.2	0

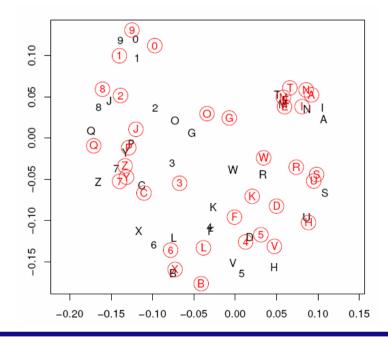
Example 2

0

The observed values for variables $d_{j.}$ and $d_{i.}$ coincide, but d_{ij} is not zero, therefore the observed difference between $d_{j.}$ and $d_{i.}$ is zero for all the observed objects, except for the objects i and j.

Dissimilarity matrix between five brands.

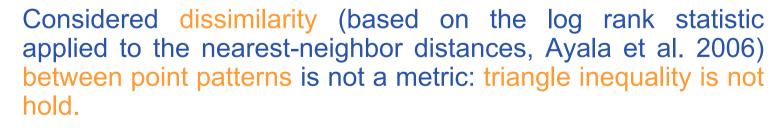
	Α	В	С	D	Е
Α	0	a	1	1	1
В	a	0	1	1	1
\mathbf{C}	1	1	0	1	2
D	1	1	1	0	4
Ε	$\begin{array}{c} 0\\ a\\ 1\\ 1\\ 1\\ 1\end{array}$	1	2	4	0


Congruence coefficients for the different methods with brands, varying a.

a	$\operatorname{cmdscale}$	isoMDS	sammon	isomap (2 neighbors)	h - plot
0.00001	0.957	0.936	0.957	0.884	0.957
1	0.947	0.940	0.951	0.884	0.934
2	0.946	0.917	0.947	0.870	0.949
3	0.933	0.901	0.934	0.873	0.935
4	0.913	0.870	0.914	0.818	0.914

Example 3

Asymmetric data: d is not a distance. Even when $d_{jj} > 0$. Dissimilarity formed by the variables giving the dissimilarity from each Morse code (i.e. $d_{i.}$, where code i-th is first presented), and the variables giving the dissimilarity to each Morse code (i.e. $d_{.i}$, where code i-th is second presented).



Point patterns: simulation

Same experiments considered in Ayala et al. (Clustering of spatial point patterns. Computational Statistics & Data Analysis. 50 (4) 1016-1032, 2006):

Three experiments for simulated Strauss processes with different parameters.

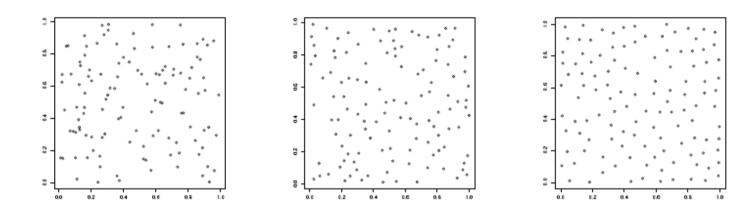
In each experiment, the same experimental setup: three different groups, each of them composed of 100 point patterns. Therefore, 3 dissimilarity matrices of 300x300.

^{AT} Libraries of R used: Splancs; Spatstat and Survival.

Point patterns: simulation

Congruer	nce coefficie	nts for the	different n	nethods with simulated p	oint patterns
Experiment	$\operatorname{cmdscale}$	isoMDS	sammon	isomap (25 neighbors)	h - plot
First	0.965	0.971	0.967	0.929	0.974
Second	0.875	0.875	0.791	0.283	0.879
Third	0.95	0.956	0.955	0.891	0.962

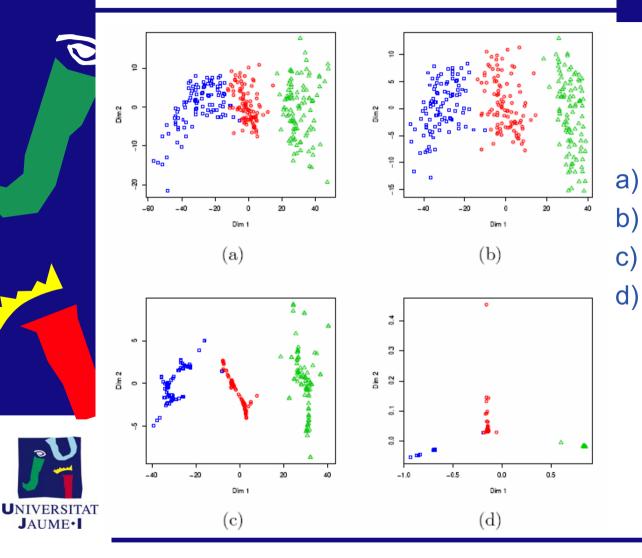
Corsten and Gabriel (1976) goodness of fit for h-plotting in two dimensions:


$$(\lambda_1^2+\lambda_2^2)/\sum_j\lambda_j^2$$

Goodness of fit of our method for one and two dimensions with simulated point patterns.

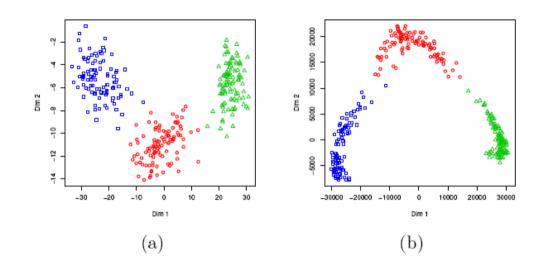
Experie	nent	One dim.	Two dim.
Firs	t	97.573	99.99
Seco	nd	88.895	99.7
Thir	d	97.99	99.996

Point patterns: Experiment 1



One of the 100 point patterns generated for each group.

Note that we compute the dissimilarity between these point patterns, not inside them.



Point patterns: Experiment 1

- Cmdscale isoMDS
- Sammon
- Isomap (25 neighbors)

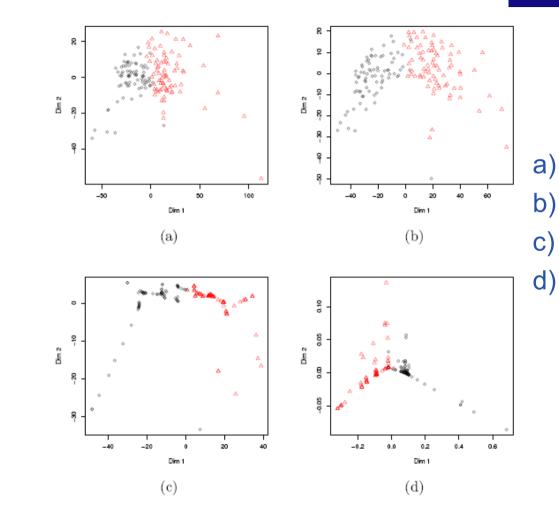
Point patterns: Experiment 1

First experiment with h - plot using: (a) the original dissimilarities, and (b) the dissimilarity ranks.

Besides the original dissimilarities, the ranking of the dissimilarities have been also considered (Seber 1984: if we have in mind cluster and pattern detection, then an expansion or contraction of the configuration could be more useful).

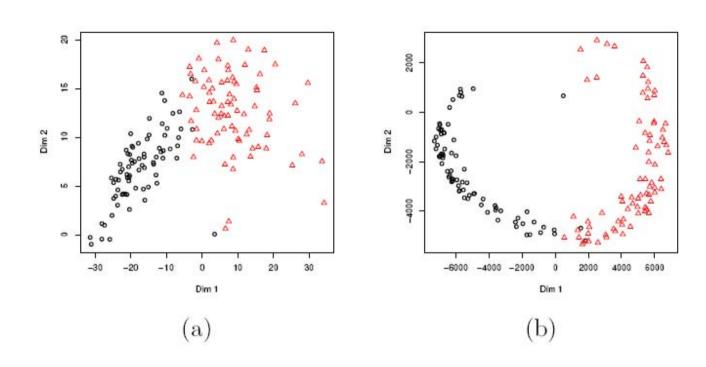
Point patterns: Endothelia

The dissimilarity matrix is made up of dissimilarities based on the log rank statistic applied to the nearest-neighbor distance between triple points (Ayala et al. 2006), for 153 individuals.


Congruence coefficients for the different methods with endothelia.

$\operatorname{cmdscale}$	isoMDS	sammon	isomap	h-plot
0.935	0.929	0.894	0.881	0.922

The unhealthy cases obtained in (Ayala et al. 2006) are represented by red triangles, while black circles are healthy cases.



Point patterns: Endothelia

) Cmdscale
) isoMDS
) Sammon
) Isomap (25 neighbors)

Point patterns: Endothelia

(a) the original dissimilarities, and (b) the dissimilarity ranks.

Conclusions

- •Alternative method for displaying dissimilarity matrices, based on h-plots.
- Good behavior through several examples (dissimilarity was not a metric).
- •Non-iterative method, very simple to implement and computationally efficient.
- •The representation goodness can also be easily assessed.
- •It can also handle naturally asymmetric data.
- More illustrative results at:

http://www3.uji.es/~epifanio/RESEARCH/hplot.pdf

•Future work: instead of second order differences between variables that indicates dissimilarity with respect to an object: higher order differences. Although the simplicity could be lost.

Thanks for your attention

