
Speeding up by using ISM-like calls

Junji NAKANO (The Institute of Statistical Mathematics, Japan)

and

Ei-ji NAKAMA (COM-ONE Ltd., Japan)

Speeding up by using ISM-like calls – p. 1

Outline

What are ISM-like calls?
Using ISM functions in R

Benchmark examples

System administration

Concluding remarks

Speeding up by using ISM-like calls – p. 2

Two ISMs

ISM: Intimate Shared Memory
is an optimization mechanism introduced first in Solaris 2.2
allows for the sharing of the translation tables involved in
the virtual to physical address translation for shared
memory pages

ISM: the Institute of Statistical Mathematics
is a research organization for Statistics in Japan
has about 50 stuff members
owns supercomputer systems

SGI Altix3700 (Intel Itanium2, Red Hat Linux V.3)
HITACHI SR11000 (IBM Power4+, AIX 5L V5.2)
HP XC4000 (AMD Opteron, Red Hat Linux V.4)

uses R on these supercomputers
is a “real” center of Japanese R users. A “Virtual” center of
them is RjpWiki (http://www.okada.jp.org/RWiki/)

What are ISM-like calls? – p. 3

ISM and TLB (1)

All modern processors implement some form of a Translation
Lookaside Buffer (TLB)

This is (essentially) a hardware cache of address translation
information
Intimate Shared Memory (ISM) can make effective use of the
hardware TLB in Solaris OS
1. Enabling larger pages - 2-256MB instead of the default

4-8KB
2. Locking pages in memory - no paging to disk

Similar mechanisms are realized in many modern OSs
Linux - Huge TLB
AIX - Large Page
Windows - Large Page

What are ISM-like calls? – p. 4

ISM and TLB (2)

The cost of translation between logical addresses and physical
addresses is called “TLB miss” and sometimes becomes a
bottle-neck
These ISM-like calls may solve the problem

We introduce the use of ISM-like mechanisms in R by adding a
wrapper program on the memory allocation function of R and
investigate the performance of them

What are ISM-like calls? – p. 5

First Benchmark

Following example is one of the most effective benchmarks of using
the ISM-like function.� �

hilbert<-function(N){

1/(matrix(1:N, N, N, byrow=T) + 0:(N - 1))

}

system.time(qr(hilbert(1000)),gcFirst=T)

ISM(T) # ISM enable

system.time(qr(hilbert(1000)),gcFirst=T)

� �
OS / CPU Without ISM With ISM
Linux amd64 / Opteron 275 15.209 5.987
Linux amd64 / Xeon E5430 7.822 5.323

Using ISM functions in R – p. 6

Using ISM (1)

Use function “ISM()”.
ISM enable/disable� �

> ISM(on = TRUE, # enable ISM

+ minKB = ISM.status()$minKB,

+ maxKB = ISM.status()$maxKB)

>

> system.time(sort(1:1e8)) # a (meaningless)

> # calculation example

>

> ISM(FALSE) # disable ISM

� �

Using ISM functions in R – p. 7

Using ISM (2)

Use an assignment operator “:=”.
ISM assign� �

> ‘:=‘

function (x, value)

{

onoff <- ISM.status()$status

ISM(TRUE)

on.exit(ISM(onoff))

assign(deparse(substitute(x)), value,

envir = parent.env(environment()))

}

<environment: namespace:base>

> foo <- matrix(rnorm(1024ˆ2),1024,1024)

> system.time(foo.qr := qr(foo), gcFirst=T)

� �

Using ISM functions in R – p. 8

Checking ISM memory

Size of used memory is shown by “ISM.list()”.
ISM list� �

> ISM(T)

> system.time(sort(1:1e8))

> ISM.list()

shmid address size

1 2949123 0x2aaaaac00000 400556032

2 2981892 0x2aaac2a00000 400556032

3 3014661 0x2aaada800000 400556032

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 157990 8.5 350000 18.7 350000 18.7

Vcells 204943 1.6 126367980 964.2 150219014 1146.1

> ISM.list()

NULL

� �

Using ISM functions in R – p. 9

Checking ISM Status

Status of ISM is shown by “ISM.status()”.

support
is TRUE if ISM is available in this
environment
status
is TRUE if ISM is enabled
minKB
shows the minimum memory size
for using ISM (Unit: KB)

maxKB
shows the maximum memory size
for using ISM (Unit: KB)

largepagesize
shows the size of large page of the
system (Unit: KB)

� �
> ISM.status()

$support

[1] TRUE

$status

[1] TRUE

$minKB

[1] 1024

$maxKB

[1] 4194304

$largepagesize

[1] 2048

� �
Using ISM functions in R – p. 10

FFT and inverse FFT

In this example, ISM is not useful at all, probably because TLB miss
seldom happens.� �

testfft<-function(n=1024){

x<-as.complex(1:n)

all.equal(fft(fft(x), inverse = TRUE)/ length(x), x)

}

system.time(testfft(1e7), gcFirst=T)

system.time(testfft(2ˆ24),gcFirst=T)

� �
OS / CPU length Without ISM With ISM

Linux amd64 / Opteron 275 10
7 19.104 18.234

2
24 39.119 47.023

Linux amd64 / Xeon E5430 10
7 13.080 12.154

2
24 30.590 38.552

Benchmark examples – p. 11

Least squares for large data

ISM is (very) useful in this example.� �
set.seed(123)

y<-matrix(rnorm(10000 * 5000),5000)

x<-matrix(runif(100 * 5000),5000)

system.time(fit<-lm(y˜x),gcFirst=T)

� �
OS / CPU Without ISM With ISM

Linux amd64 / Opteron 275 216.756 67.126

Linux amd64 / Xeon E5430 30.493 28.005

Benchmark examples – p. 12

OS dependence

We execute 3 OSs on one machine. Results does not depend on
OSs.� �

hilbert<-function(N){

1/(matrix(1:N, N, N, byrow=T) + 0:(N - 1))

}

system.time(qr(hilbert(1e3)),gcFirst=T)

system.time(qr(hilbert(2ˆ10)),gcFirst=T)

� �
OS / CPU size Without ISM With ISM

Linux amd64 / Opteron 248 10
3 20.197 9.826

(gcc-4.1 -O2) 2
10 83.120 60.346

Solaris10 / Opteron 248 10
3 20.138 8.456

(Sun -xlibmil -xO5 -dalign) 2
10 71.194 57.181

Vista x64 / Opteron 248 10
3 22.74 10.12

(gcc-4.1 -O3) 2
10 78.08 53.81

Benchmark examples – p. 13

CPU dependence

We execute one OS on 5 CPUs. Results depend on CPUs.
OS / CPU size Without ISM With ISM

Linux-2.6.18 amd64 / Opteron 248 10
3 20.197 9.826

2
10 83.120 60.346

Linux-2.6.18 amd64 / Opteron 275 10
3 15.209 5.987

2
10 58.296 42.988

Linux-2.6.18 amd64 / Xeon E5430 10
3 7.822 5.323

2
10 27.438 114.259

Linux-2.6.18 amd64 / Xeon 3040 10
3 12.555 8.983

2
10 59.440 69.471

Linux-2.6.18 powerpc64 / Powerpc G5 10
3 27.214 26.220

2
10 166.487 113.136

Benchmark examples – p. 14

Install ISM to R

� �
$ wget http://prs.ism.ac.jp/RISM/ism_2.7.1.patch

$ patch -p1 < ism_2.7.1.patch

� �
By this patch, on

UNIX,
“–with-ism” is set to “yes” in configure

Windows,
“USE_ISM” is set to “yes” in src/gnuwin32/MKRules file

System administration – p. 15

OS administration

ISM is not available by default
except Solaris10.
To use ISM, We have to
specify

Resource management
of users
Memory size of HugeTLB
pages

Note that HugeTLB pages
generally are not used by
usual programs.
Therefore, all physical
memory may not be efficiently
used.

System administration – p. 16

OS administration - Solaris10

Resource management of users and memory size for ISM are
specified in “project” and reboot operation is required� �

projmod -K "project.max-shm-memory=

(priv,2gb,deny)" group.staff

� �
Check status� �

$ /usr/bin/id -p

uid=500(ruser) gid=10(staff) projid=10(group.staff)

$ /usr/bin/prctl -n project.max-shm-memory

-i project group.staff

project: 10: group.staff

NAME PRIVILEGE VALUE FLAG ACTION RECIPIENT

project.max-shm-memory

privileged 2.00GB - deny

system 16.0EB max deny

� �
System administration – p. 17

OS administration - Solaris8,9

Resource management and memory size
Edit /etc/system file, and reboot� �

set shmsys:shminfo_shmmax=2147483648

� �
Check status� �

$ /usr/sbin/sysdef |grep SHM

2147483648 max shared memory segment size (SHMMAX)

100 shared memory identifiers (SHMMNI)

� �

System administration – p. 18

OS Administration - Linux (1)

Setting of environments

Debian Linux
Set “Y” to [File systems] ⇒ [Pseudo filesystems] ⇒
[HugeTLB file system support] and rebuild the kernel

Red Hat Linux
The result of “ulimit -l” should be “unlimited”
In /etc/security/limits.conf, add� �

* - memlock unlimited

� �

System administration – p. 19

OS Administration - Linux (2)

For Setting HugeTLB size, in /etc/sysctl.conf, add
vm.nr_hugepages = 1024, and reboot

Check status� �
$ cat /proc/meminfo |grep Huge
HugePages_Total: 1024
HugePages_Free: 1024
HugePages_Rsvd: 0
Hugepagesize: 2048 kB

� �

System administration – p. 20

OS Administration - Linux (3)

For setting SHM, edit /etc/sysctl.conf

SHMMAX (Unit: byte)
kernel.shmmax=2141198334
SHMALL (Unit: page)
kernel.shmall=522753

SHMALL is specified by the number of pages including both small
pages and large pages. Thus, a large number can be used for it.

System administration – p. 21

OS administration - AIX

(Not yet tested.)

For setting HugeTLB size, set� �
smitty tuning
lgpg_regions = 256
lgpg_size = 16777216

� �
and reboot.
Check status� �

$ vmo -a | grep lgpg
lgpg_regions = 256
lgpg_size = 16777216
soft_min_lgpgs_vmpool = 0

� �
In addition, several setting for SHM are required.

System administration – p. 22

OS administration - Windows

Resource management
Start → Control Panel → Administrative Tools → Local
Security Policy → Local Policy → User Rights Assignment
In “Lock pages in memory”, add “administrator”

For execution,
“Run as administrator.” is required.

Windows Vista has no function to reserve LagePage. It usually runs
many process. Therefore, we lack LargePage soon after booting.
In some other OSs, LagePage is dynamically set. However, we also
lack LargePage after long execution.

System administration – p. 23

Concluding remarks

Advantages
If “TLB miss” often happens, ISM is effective
If data are huge, ISM is effective.

Disadvantages
Calculation time sometimes becomes large by using ISM
Memory usage sometimes becomes inefficient

Other characteristics
Effects of ISM depend on CPU, not on OS
Precision and calculation order are not effected by ISM
Effects of ISM sometimes depend on values of data
If the compiler optimization is effectively used, ISM is not
effective

Concluding remarks – p. 24

	Outline
	Two ISMs
	ISM and TLB (1)
	ISM and TLB (2)
	First Benchmark
	Using ISM (1)
	Using ISM (2)
	Checking ISM memory
	Checking ISM Status
	FFT and inverse FFT
	Least squares for large data
	OS dependence
	CPU dependence
	Install ISM to R
	OS administration
	OS administration - Solaris10
	OS administration - Solaris8,9
	OS Administration - Linux (1)
	OS Administration - Linux (2)
	OS Administration - Linux (3)
	OS administration - AIX
	OS administration - Windows
	Concluding remarks

