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[ Mass spectrometer ]

device to introduce sample

detector

computer 

source to produce ions from sample

analyzer(s) to separate ions by m/z
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[ Liquid and gas chromatography ]



[ GC-MS, LC-MS ]

can use a liquid or gas chromatography column to send sample to the mass spectrometer

resulting measurement is mass-to-charge ratio resolved with respect to time:
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[ Component resolution problem ]

D = CST where D is matrix of data, column i of C is the elution profile of a compound, and

column i of S is mass spectrum of that compound

given D, want to estimate the elution profiles C and mass spectra S:

3190 3200 3210 3220 3230 3240 35 65 95 125 155 185

3190 3200 3210 3220 3230 3240 35 65 95 125 155 185



[ Component resolution problem ]

component resolution for multiple datasets D1, D2, . . . , DK :

















D1

D2

...

DK

















=

















C1

C2

...

CK

















ST

• elution profiles free to vary per-dataset

• mass spectra assumed to be constant between datasets

• integral of an elution profile in different datasets used to quantify relative abundance of

component between datasets



[ Component resolution problem ]

Given estimates for mass spectra/retention times, match this information against those of

compounds in library (e.g. NIST 05 database) and identify chemical constituents of the sample

quantify similarity of estimated spectrum to that of spectrum in database via a matching factor

function, e.g., the normalized dot product matching factor:
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[ Peak-based ]

peak-based methods for component resolution:

• examine the chromatogram at each m/z value for peaks

• examine the total ion chromatogram (TIC) for peaks

• use heuristics to decide which peaks represent components / infer the shape of components

• thereby determine C, from which S can be determined by linear regression from D = CST

Automated mass spectral deconvolution and identification system (AMDIS) of Stein and

collaborators is an example:



[ MCR-ALS ]

multivariate curve resolution alternating least squares (MCR-ALS) is a self-modeling method:

given D = CST starts with some starting guess for C then alternates refinement of C and S

• C = (ST )+D

• ST = C+D

results in estimates for C and S but no parametric model-based description

MCR-ALS does allow solutions for C and S to be subject to constraints:

• non-negativity via R package nnls

• unimodality via R package Iso

• closure/normalization

• selectivity

• . . .

MCR-ALS extends naturally to modeling multiple datasets simultaneously



[ MCR-ALS ]

Implementation of MCR-ALS:

• available as the new R package ALS

• all important constraints included

• on CRAN

Motivation:

• facilitate a systematic comparison of the component resolution abilities of global analysis

and MCR-ALS for data in which underlying elution profiles are completely overlapping



[ Global analysis ]

Global analysis:

• elution profiles are described with a parametric model C(θ)

• starting values for θ are improved and estimates for mass spectra S are obtained by

solution of a separable nonlinear least squares problem

• mass spectra and amplitude parameters of elution profiles subject to non-negativity

constraints

• like MCR-ALS, is well-suited to modeling multiple datasets

parametric model for elution profile: exponentially modified Gaussian (EMG)

amplitude location

decay rate

width



[ Global analysis ]

idea of global analysis:

• formulate parametric model for elution profiles C(θ)

• set starting values θ0

• θ0 allows solving for mass spectra as ST = C+D

• this allows determination of residuals as D − C(θ0)S
T = D − C(θ0)C

+D

• residuals are iteratively minimized with respect to θ

• this is instance of separable nonlinear least squares

model for D is completely determined via relatively small number of parameters



[ Global analysis ]

TIMP is a package for fitting separable nonlinear models that has been applied to

measurements arising in

• time (and/or temperature, polarization, pH)-resolved spectroscopy

• fluorescence lifetime imaging microscopy (FLIM)

New options for fitting mass spectroscopy data have been recently added to TIMP:

address outliers, baseline correction/estimation, saturation



[ Comparison of methods ]

peak-based MCR-ALS global analysis

fast yes yes no

integrated with mass spec. libraries yes no no

model multiple datasets no yes yes

resolve completely overlapping components no yes yes

cons peak-based:

• broad elution profiles may be missed, or their local maxima may be detected as separate

components

cons MCR-ALS:

• flexibility in shape of columns of C may allow more than one solution with same residual

sum of squares

cons global analysis:

• requires user-intervention in model-specification



[ Resolution of completely co-eluting components ]

plots in color depict contributing elution profiles

peak matching / MCR-ALS / global analysis can be used for component resolution when

elution profiles are not completely overlapping (top row)

either MCR-ALS or global analysis make possible resolution of completely overlapping

components (bottom row)



[ Resolution of completely co-eluting components ]

simulate data with Poisson noise, using elution profiles and mass spectra shown below

50 80 140 200 260 320 380 440

50 80 140 200 260 320 380 440

EMG parameters for elution profiles:

component 1 component 2

location 5754 5755

FWHM 7 7

rate 1 1

amplitude, dataset 1 1 2

amplitude, dataset 2 1.5 2



[ Resolution of completely co-eluting components ]

1 31 91 151 211 271 331 391 1 31 91 151 211 271 331 391

1 31 91 151 211 271 331 391 1 31 91 151 211 271 331 391

mass spectra estimated by global analysis (middle row)

match the spectra used in simulating the data (top row)

MCR-ALS (bottom row) returns a linear combination of the true mass spectra



[ Resolution of completely co-eluting components ]

can examine many other problems with varying overlap of the elution profiles, from starting

values for C that are slightly shifted versions of the values used in simulating the data:



[ Resolution of completely co-eluting components ]

observe that as location of elution profiles becomes more similar, MCR-ALS fails:
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[ Resolution of completely co-eluting components ]

while MCR-ALS is not able to estimate good mass spectra from slightly wrong starting values,

given perfect starting values it also performs well
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A range of solutions have the same residual sum of squares under MCR-ALS; this ambiguity is

a major drawback of the flexibility inherent to the method



[ Conclusions ]

Conclusions:

• component resolution problems in GC/MS and LC/MS data possible to address via

– parametric global analysis: R package TIMP

– non-parametric MCR-ALS: R package ALS

• both methods can deal with completely co-eluting components

• in certain situations global analysis returns better estimates of the mass spectra than

MCR-ALS

Future work:

• a significant disadvantage of global analysis is run-time and user-intervention needed for

model specification; for high-throughput deployment, more automation is necessary

• develop criteria to identify regions of data that would benefit from global analysis
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