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In a Bayesian analysis the statistician must specify prior densities
for the model parameters.

If he is bold enough to choose an informative prior for the model
parameter θ, then this prior should well-represent beliefs about θ.
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Why be bold?

If there are experts or historical data that have accurate
information about the model parameters, then we should use this
in choosing a prior as this will make our posterior inferences more
precise.

This point is well made by Garthwaite, Kadane and O’Hagan: ‘An
aim of much statistical research is to wring as much from data as
we possibly can, but using expert opinion better (or using it at all)
could add more information than slight improvement in efficiency
through better techniques of data analysis’ (p. 698, 2005)
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Being bold . . .

The challenge for the statistician is that beliefs are most commonly
expressed as typical values, an average or a set of cumulative
probabilities. It is not always clear how to translate these beliefs to
a specific density.



We need tools to help in this translation process.

Belief → p(θ)

As a start towards this end, a set of R functions have been written
to identify a prior distribution for θ when a continuous parametric
density can adequately represent prior beliefs about θ.



Available Densities

I Normal

I Beta

I Gamma

I Inverse-Gamma

I Student’s T



General Function Syntax

For a prior density f with parameters α, β then the function form is

f.prior(args)

which returns the vector (α, β) and a plot if desired.



What are the args?

Each function attempts to find a matching prior based on some
combination of mean, mode, variance and coverage probabilities.

Essentially, the functions are an R-version of the modal interval
approach discussed by Garthwaite, Kadane and O’Hagan (2005).



Usage by example

Consider the following problem posed by Jim Albert:

‘If p denotes the probability of flipping a head, then your ‘best
guess’ at p is .5. Moreover, you believe that it is highly likely that
the coin is close to fair, which you quantify by P(.44 < p < .56) =
.9’ (p. 55, 2007).



If we want a Beta prior to reflect our beliefs about p, what are the
appropriate parameter settings?

If we take ‘best guess’ to mean the mode, then we could use the
following as a first attempt at identifying a suitable Beta.

beta.prior(mode=.5,p=.05,q=.44)

Here q is the specified quantile and p its associated probability.
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With this specification, we assume that the density was fairly
symmetric. To check that this is reasonable we can use the plot
option and mark the 90 % coverage interval.

beta.prior(mode=.5,p=.05,q=.44,plot=T)

So we find that Beta(93.5, 93.5) well represents the prior beliefs
about p.

Note that Albert suggests Beta(100, 100) which
curve(dbeta(x,100,100),add=T,lty=2) indicates places
slightly more mass for values between (.44, .56) then the prior
beliefs warrant.
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Again, from Albert, suppose our data are Yi |λ ∼ Poisson(λ).

Consider the following beliefs and choice of density for the rate λ.

Density Belief

Gamma E [λ] = 3 and P(λ ≤ 2.1) = .25

log(λ) ∼ Normal P(1.94 ≤ λ ≤ 3.81) = .5

log(λ) ∼ Normal E [λ] = 3 and P(λ ≥ 8) = .02
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Enhancements

I Use of effective sample size for Beta distribution where
neffective = α + β for θ ∼ Beta(α, β).

I Transformations for Normal and T distributions so beliefs can
be expressed in terms of X though the actual model is
f (X ) ∼ N(µ, σ2) or ∼ T (µ, σ2 = 1, ν).



Further Extensions

I More densities.

I Identifying the prior density that best matches prior conditions
rather than requiring an exact match for a minimally sufficient
set of arguments.

I Mixture priors.



Source Code and Documentation

http://skoval.bol.ucla.edu/R.html

http://skoval.bol.ucla.edu/R.html
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