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Problem definition

• Genotyping is expensive.

• In large epidemiological cohort studies it is economical to genotype
only a subset of the cohort.

1. First stage: some non-genetic covariates and the disease
outcome are recorded for a cohort.

2. Second stage: a subset of the cohort is genotyped.

• How the individuals for genotyping should be selected?



Study designs for two-stage studies

• simple random sampling

• case-control design

• nested case-control design

• case-cohort design

• select all cases (rare disease assumption) and a random
sample of the cohort (subcohort).

• extreme selection

• Individuals with highest and lowest covariate values are
selected.

• For example, select 100 old cases, 100 old controls, 100, young
cases and 100 young controls.

• Optimal under linear regression model (Elfving, 1952)

• D-optimal design



Inference and missing data

• Genotyping only a part of the cohort can be understood as a missing
data problem (missing by design).

• Sampling distribution inference

• Observations with complete data represent the whole cohort
when appropriately weighted.

• Full likelihood inference

• All observations are included. Likelihood is an integral over the
missing data.

• “When making direct-likelihood or Bayesian inferences about θ,
it is appropriate to ignore the process that causes missing data
if the missing data are missing at random and the parameter of
the missing data process is ‘distinct’ from θ.” (Rubin, 1976)

• may be computationally demanding.



Statistical analysis

• At the first-stage we have measured the covariate x(i) and the
disease outcome y(i) for the whole cohort i ∈ C = {1, 2, . . . , N}.

• At the second-stage, the genetic covariate of interest g(i) is
measured for a subset of the cohort but is missing for the most of the
cohort.

• The model parameters can be estimated by directly maximizing the
likelihood

L(ψ, θ) ∝

n∏

j=1

pθ(g(j))pψ(x(j) | g(j))pθ(t(j), δ(j) | g(j), x(j))

N∏

j=n+1

∑

g

pθ(G(j) = g)pψ(x(j) | g)pθ(t(j), δ(j) | g, x(j)),

where Y = (t, δ) and G is observed for individuals j = 1, . . . , n and
not observed for individuals j = n+ 1, . . . , N . The possible
dependence between g and x need to be modeled.



Statistical analysis in R

• Maximum likelihood analysis is a general approach but requires
flexible tools ⇒ use R.

• The missing genetic variable is discrete ⇒ integration reduces to
summation.

• The likelihood function can be written in closed form and maximized
using the R function optim.

• Variances are estimated from Hessian returned by optim.



D-optimal design

• D-optimal design maximizes the determinant of Fisher information
matrix.

• We used observed information matrix and derived the D-criterion to
be maximized under logistic regression and proportional hazards
models.

• Equations are given in Karvanen, J., Kulathinal S., Gasbarra D.,
2008. Optimal designs to select individuals for genotyping
conditional on observed binary or survival outcomes and
non-genetic covariates. Computational Statistics & Data Analysis,
doi:10.1016/j.csda.2008.02.010.

• D-optimal designs are found by heuristic search. Greedy method
works well: the individuals are selected sequentially one by one so
that the D-criterion Dn for n individuals is maximized on the condition
that n− 1 individuals have been already selected.



Simulation example: Rare disease

• Follow-up data for 2000 individuals are generated.

• The event times of a rare disease follow the Weibull regression
model where the covariates are a normally distributed phenotype x
(regression coefficient a = 1) and a genetic indicator variable g
(regression coefficient b = 0.5, allele frequency π = 0.4).

• Phenotype x is generated from the distribution N(µ+ γg, σ2), where
µ = 0, σ2 = 1 and γ = 0.3.

• Simple random sampling (SRS), case-cohort design (CC), extreme
selection and D-optimal design are compared when logistic
regression model or proportional hazards model are fitted to the
data.

• Selection under D-optimal design is illustrated graphically.



Rare disease: logistic model
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Rare disease: logistic model

parameter design n=100 n=200 n=500
estim. SE estim. SE estim. SE

a SRS 1.08 0.11 1.08 0.11 1.06 0.11
CC 1.08 0.11 1.07 0.10 1.07 0.10
extreme 1.08 0.11 1.07 0.10 1.07 0.10
D-optimal 1.08 0.10 1.07 0.10 1.07 0.10

b SRS 0.63 0.85 0.65 0.61 0.64 0.38
CC 0.52 0.40 0.54 0.29 0.59 0.22
extreme 0.58 0.37 0.60 0.27 0.59 0.20
D-optimal 0.57 0.30 0.57 0.24 0.56 0.20

c SRS -3.54 0.46 -3.53 0.35 -3.53 0.24
CC -3.46 0.23 -3.48 0.19 -3.49 0.17
extreme -3.52 0.23 -3.52 0.19 -3.49 0.17
D-optimal -3.49 0.20 -3.50 0.17 -3.49 0.17

π = 0.4 SRS 0.40 0.041 0.40 0.032 0.40 0.021
CC 0.40 0.049 0.40 0.039 0.40 0.023
extreme 0.40 0.046 0.40 0.037 0.40 0.023
D-optimal 0.40 0.046 0.40 0.035 0.40 0.021



Rare disease: proportional hazards model
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Rare disease: proportional hazards model

parameter design n=100 n=200 n=500
estim. SE estim. SE estim. SE

a = 1 SRS 0.99 0.095 0.99 0.093 0.98 0.087
CC 1.00 0.088 0.99 0.082 0.99 0.077
extreme 0.99 0.087 0.98 0.082 0.99 0.076
D-optimal 1.00 0.085 0.99 0.080 0.99 0.076

b = 0.5 SRS 0.50 0.24 0.52 0.23 0.53 0.20
CC 0.50 0.22 0.54 0.19 0.52 0.16
extreme 0.50 0.21 0.52 0.18 0.52 0.15
D-optimal 0.51 0.20 0.50 0.17 0.52 0.15

π = 0.4 SRS 0.40 0.041 0.40 0.032 0.40 0.021
CC 0.40 0.045 0.40 0.037 0.40 0.023
extreme 0.41 0.045 0.40 0.035 0.40 0.022
D-optimal 0.41 0.045 0.40 0.035 0.40 0.021



Conclusions and remarks

• On the basis of the simulation results, extreme selection may be
recommended as a practical study design.

• does not require initial estimates

• easy to implement

• gives relatively good results compared to D-optimal design

• probably possible improve the results of extreme selection
further by specifying the ratio of cases and non-cases according
to some suitable criterion

• D-optimality and other criteria based on Fisher information provide
the theoretical background for efficient study design and serve as
benchmarks for the ad-hoc designs.



Conclusions and remarks

• One should be aware that if the data are analyzed using the full
likelihood, also extreme selection may be sensitive to wrong
distributional assumptions. This was seen in another simulation
example where the covariate x was generated from a non-normal
distribution but modeled by normal distribution and as result,
especially the estimates of the genotype effect were clearly biased.
Fortunately, the empirical distribution of x is observed and we have a
possibility to check our distributional assumptions.



Conclusions and remarks

• D-optimal design and extreme selection may be applied also in
situations where the number of genetic or non-genetic covariates is
greater than one.

• For a vector X of non-genetic covariates we may consider the linear
combination z = ax, where a is a vector of initial parameter
estimates, and proceed as in the case of a single non-genetic
covariate.

• When there are several genetic covariates of interest, extreme
selection can be applied without modifications and for D-optimal
design we may compute the optimal design for a typical genetic
covariate or alternatively define the selected subset as a union of the
optimal designs computed separately for each genetic covariate.
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