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1 Introduction

The BLCOP package is an implementation of the Black-Litterman and copula opinion pooling frame-
works. The current release (0.2.2) should be considered as a beta version, and the main purpose of this
release is to allow the community to use it and suggest improvements (any feedback would be greatly
appreciated). This vignette gives an overview of these two opinion-blending methods, briefly shows how
they are implemented in this package, and closes with a short discussion of how the package may evolve
in the future.

2 Overview of the Black-Litterman model

The Black-Litterman model was devised in 1992 by Fisher Black and Robert Litterman. Their goal was
to create a systematic method of specifying and then incorporating analyst/portfolio manager views into
the estimation of market parameters. Let A = {a1, a2, ..., .an} be a set of random variables representing
the returns of n assets. In the BL approach, the joint distribution of A is taken to be multivariate normal,
i.e. A ∼ N(µ,Σ). The problem they then addressed was that of incorporating an analyst’s views into
the estimation of the market mean µ 1. Suppose that we take µ itself to be a random variable which is
itself normally distributed, and moreover that its dispersion is proportional to that of the market. Then

µ ∼ N(π, τΣ),

and π is some underlying parameter which can be determined by the analyst using some established
procedure. Black and Litterman argued from equilibrium considerations that this should be obtained
from the intercepts of the capital-asset pricing model.

Next, the analyst forms subjective views on the actual mean of the returns for the holding period.
This is the part of the model that allows the analyst/portfolio manager to include his or her views. BL
proposed that views should be made on linear combinations (i.e. portfolios) of the asset return variable
means µ. Each view would take the form of a “mean plus error”. Thus for example, a typical view would
look as follows:

pi1µ1 + pi2µ2 + ...+ pinµn = qi + εi

, where εi ∼ N(0, sigma2
i ). The standard deviations σ2

i of each view could be taken as controlling the
confidence in each view. Collecting these views into a matrix we will call the “pick” matrix, we obtain
the “general” view specification

Pµ ∼ N(µ,Ω).

Ω is the diagonal matrix diag(σ2
1 , σ

2
2 , ..., σ

n
2 ). It can be shown (c.f. [Me08], p.5 and appendix), based on

Bayes’ Law, that the posterior distribution of the market mean conditional on these views is

µ|q;Ω ∼ N(µBL,Σ
µ
BL)

where

µBL = ((τΣ)−1 + PTΩ−1P )−1((τΣ)−1π + PTΩ−1q)
ΣµBL = ((τΣ)−1 + PTΩ−1P )−1

We can then obtain the posterior distribution of the market by taking A|q,Ω = µ|q,Ω+Z, and Z ∼ N(0,Σ)
is independent of µ. One then obtains that E[A] = µBL and ΣBL = Σ + ΣµBL ([Me08], p. 5).
Let us now see how these ideas are implemented in the BLCOP package.

1A. Meucci has reformulated the model in terms of forming views directly on market realization rather than the mean,
and in my opinion this formulation is considerably clearer. See [Me08]
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3 Using the Black-Litterman model in BLCOP

The implementation of the Black-Litterman model in BLCOP is based on objects that represent views
on the market and objects that represent the posterior distribution of the market after blending the
views. We will illustrate this with a simple example. Suppose that an analyst wishes to form views on 6
stocks, 3 of which are technology stocks and the other 3 of which are from the financial sector. Intially,
she has a view on the technology sector and believes that the average of 2 of the stocks will outperform
the third, say 1

2 (MS + IBM) − DELL ∼ N(0.06, 0.01). We will create a BLViews class object with the
BLViews constructor function. Its arguments are the “pick” matrix, a vector of confidences, the vector
“q”, and the the names of the assets in one’s “universe”.

> pickMatrix <- matrix(c(rep(1/2, 2), -1, rep(0, 3)), nrow = 1, ncol = 6 )

> views <- BLViews(P = pickMatrix, q = 0.06,confidences = 100,

+ assetNames = colnames(monthlyReturns))

> views

1 : 0.5*IBM+0.5*MS+-1*DELL=0.06 . Confidence: 100

Next, we need to determine the “prior” distribution of these assets. The analyst may for instance decide
to set these means to 0, and then calculate the variance-covariance matrix of these through some standard
estimation procedure (e.g. exponentially weighted moving average). Here we use cov.shrink from the
corpcov package.

> priorMeans <- rep(0, 6)

> priorVarcov <- unclass(cov.shrink(monthlyReturns))

Estimating optimal shrinkage intensity lambda.var (variance vector): 0.2901
Estimating optimal shrinkage intensity lambda (correlation matrix): 0.0969

We can now calculate the posterior market distribution using the posteriorEst. This takes as param-
eters the view object, the prior covariance and mean, and “tau” 2. The procedure for setting τ is the
subject of some controversy in the literature, but here we shall set it to 1/2.

> marketPosterior <- posteriorEst(views = views, sigma = priorVarcov,

+ alpha = priorMeans, tau = 1/2)

Prior means:
IBM MS DELL C JPM BAC
0 0 0 0 0 0

Posterior means:
IBM MS DELL C JPM BAC

0.004182604 0.007079224 -0.027220512 0.003876496 0.003686935 0.002247500
Posterior covariance:

IBM MS DELL C JPM BAC
IBM 0.023465258 0.009561087 0.012734802 0.009014684 0.010499443 0.006264828
MS 0.009561087 0.032600588 0.014685795 0.013606881 0.014508407 0.009583470
DELL 0.012734802 0.014685795 0.038300046 0.007808936 0.009173319 0.005893862
C 0.009014684 0.013606881 0.007808936 0.020016944 0.011931049 0.008204580
JPM 0.010499443 0.014508407 0.009173319 0.011931049 0.029266751 0.013394136
BAC 0.006264828 0.009583470 0.005893862 0.008204580 0.013394136 0.016143364
attr(,"lambda")
[1] 0.0968954
attr(,"lambda.estimated")
[1] TRUE

2An additional parameter called kappa will be discussed shortly
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attr(,"lambda.var")
[1] 0.2900958
attr(,"lambda.var.estimated")
[1] TRUE

Now suppose that we wish to add another view, this time on the average of the three financial stocks.
This can be done conveniently with addBLViews as in the following example:

> finViews <- matrix(ncol = 3, nrow = 1, dimnames = list(NULL, c("C","JPM","BAC")))

> finViews[,1:3] <- rep(1/3,3)

> views <- addBLViews(finViews, 0.15, 90, views)

> views

1 : 0.5*IBM+0.5*MS+-1*DELL=0.06 . Confidence: 100
2 : 0.333333333333333*C+0.333333333333333*JPM+0.333333333333333*BAC=0.15 . Confidence: 90

We will now recompute the posterior, but this time using the captial asset pricing model to compute
the “prior” means. Rather than manually computing these, it is convenient to use the BLPosterior
wrapper function. It will compute these “alphas”, as well as the variance-covariance matrix of a returns
series, and will then call poseriorEst automatically.

> marketPosterior <- BLPosterior(as.matrix(monthlyReturns), views, tau = 1/2,

+ marketIndex = as.matrix(sp500Returns),

+ riskFree = as.matrix(US13wTB))

Estimating optimal shrinkage intensity lambda.var (variance vector): 0.2901
Estimating optimal shrinkage intensity lambda (correlation matrix): 0.0969

Prior means:
IBM MS DELL C JPM BAC

0.020883598 0.059548398 0.017010062 0.014492325 0.027365230 0.002829908
Posterior means:

IBM MS DELL C JPM BAC
0.04684788 0.09800115 0.02453154 0.05360993 0.07975550 0.03889862
Posterior covariance:

IBM MS DELL C JPM BAC
IBM 0.022971538 0.008841343 0.012223893 0.008239472 0.009441728 0.005532868
MS 0.008841343 0.031551347 0.013940993 0.012476779 0.012966473 0.008516421
DELL 0.012223893 0.013940993 0.037771349 0.007006734 0.008078779 0.005136419
C 0.008239472 0.012476779 0.007006734 0.018799748 0.010270283 0.007055297
JPM 0.009441728 0.012966473 0.008078779 0.010270283 0.027000770 0.011826033
BAC 0.005532868 0.008516421 0.005136419 0.007055297 0.011826033 0.015058206
attr(,"lambda")
[1] 0.0968954
attr(,"lambda.estimated")
[1] TRUE
attr(,"lambda.var")
[1] 0.2900958
attr(,"lambda.var.estimated")
[1] TRUE

Both BLPosterior and posteriorEst have a kappa parameter which may be used to replace the
matrix Ω of confidences in the posterior calculation. If it is greater than 0, then Ω is set to κPTΣP
rather than diag(σ2

1 , σ
2
2 , ..., σ

n
2 ). This choice of Ω is suggested by several authors, and it leads to the

confidences being determined by volatilities of the asset returns. A user may also be interested in

3



comparing allocations that are optimal under the prior and posterior distributions. A helper function is
provided in the BLCOP package for doing this, and it can use any optimization routine that relies on a
distribution’s first and second moments. This helper function is optimalPortfolios. If no optimizing
function is passed in, it will use solve.QP to perform basic Markowitz optimization (as shown below).
A barplot that compares the portfolio weights is optionally produced.

> optPorts <- optimalPortfolios(marketPosterior, doPlot = TRUE)

$priorPfolioWeights
IBM MS DELL C JPM BAC
0 1 0 0 0 0

$postPfolioWeights
IBM MS DELL C JPM BAC

0.00000000 0.98960050 0.00000000 0.00000000 0.01039950 0.00000000

MS JPM
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Additional parameters may be passed into one’s optimizer. In the case of the default optimizer, one
can pass in a constraints argument that is used to control the execution of solve.QP. Thus we can
remove the “long only” constraint as in the following example:

> constr <- list()

> constr$bvec <- 1

> constr$meq <- 1

> constr$Amat <- matrix(rep(1, 6), ncol = 1, nrow = 6)

> optimalPortfolios(marketPosterior, constraints = constr)
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$priorPfolioWeights
IBM MS DELL C JPM BAC

0.6098815 3.2863069 -0.4268998 -1.1890440 1.0776810 -2.3579256

$postPfolioWeights
IBM MS DELL C JPM BAC

0.1893273 2.5040596 -1.2453713 -0.4516378 1.8526563 -1.8490341

IBM MS DELL C JPM BAC

Prior
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1
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Finally, density plots
of marginal prior and posterior distributions can be generated with densityPlots. As we will see in the
next section, this gives more interesting results when used with copula opinion pooling.

> densityPlots(marketPosterior, assetsSel = "JPM")
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4 Overview of Copula Opinion Pooling

Copula opinion pooling is an alternative way to blend analyst views on market distributions that was
developed by Attilio Meucci towards the end of 2005. It is similar to the Black-Litterman model in
that it also uses a “pick” matrix to formulate views. However it has several advantages including the
following:

� Views are made on realizations of the market, not on market parameters as in the original formu-
lation of BL

� The joint distribution of the market can be any multivariate distribution

� Views are not restricted to the normal distribution

� The parameters in the model have clearer meanings

� The model can easily be generalized to incorporate the views of multiple analysts

Nevertheless, all of this comes at a price. We can no longer use closed-form expressions for calculating
the posterior distribution of the market and hence must rely on simulation instead. Before proceeding to
the implementation however let us look at the theory. Readers are referred to [Me05] for a more detailed
discussion.
As before, suppose that we have a set of n assets whose returns are represented by a set of random
variables A = {a1, a2, ..., an}. As in Black-Litterman, we suppose that A has some prior joint distribution
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whose c.d.f we will denote by ΦA. Denote the marginals of this distribution by φi. An analyst forms his
views on linear combiniations of future realizations of the values of A by assigning subjective probability
distributions to these linear combinations. That is we form views of the form pi,1a1+pi,2a2+...+pi,nan ∼
θi, where θi is some distribution. Denote the pick matrix formed by all of these views by P once again.
Now, since we have assigned some prior distribution ΦA to these assets, it follows that actually the
product V = PA inherits a distribution as well, say

vi = pi,1a1 + pi,2a2 + ...+ pi,nan ∼ θ′i
. In general θi 6= θ′i unless one’s views are identical to the market prior. Thus we must somehow resolve
this contradiction. A straightforward way of doing this is to take the weighted sum of the two marginal
c.d.fs, so i.e. θ̂i = τiθi + (1 − τi)θ′i, and τi ∈ [0, 1] is a parameter representing our confidence in our
subjective views. This is the actual marginal distribution that will be used to determine the market
posterior.

The market posterior is actually determined by setting the marginals of distributions of V to θ̂i, while
using a copula to keep the dependence structure of V intact. Let V = (v1, v2, ..., vk), where k is the
number of views that the analyst has formed. Then vi ∼ θ′i. Let C be the copula of V so that C is the
joint distribution of

(θ′1(v1), θ′2(v2), ..., θ′k(vk)) = (C1, C2, ..., Ck)

if we now take the θ′i to be cumulative density functions. Next set V̂ as the random variable with the
joint distribution (θ̂1

−1
(C1), θ̂2

−1
(C2), ..., θ̂k

−1
(Ck)). The posterior market distribution is obtained by

rotating V̂ back into market coordinates using the orthogonal complement of P . See [Me05], p. 5 for
details.

5 COP in BLCOP

Let us now work through a brief example to see how these ideas are implemented in the BLCOP package.
First, one again works with objects that hold the view specification, which in the COP case are of class
COPViews. These can again be created with a constructor function of the same name. However a
significant difference is the use of mvdistribution and distribution class objects to specify the prior
distribution and view distributions respectively. We will show the use of these in the following example,
which is based on the example used in [?], p.9. Suppose that we wish to invest in 4 market indices
(S&P500, FTSE, CAC and DAX). Meucci suggests a multivariate Student-t distribution with ν = 5
degrees of freedom and dispersion matrix given by:

10−3


.376 .253 .333 .397
. .360 .360 .396
. . .600 .578
. . . .775

 .

He then sets µ = δΣweq where weq is the relative capitilization of the 4 indices and δ = 2.5. For simplicity
we will simply take weq = (1/4, 1/4, 1/4, 1/4).

> dispersion <- c(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000

> sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)

> caps <- rep(1/4, 4)

> mu <- 2.5 * sigma %*% caps

> dim(mu) <- NULL

> marketDistribution <- mvdistribution("mt", mean = mu, S = sigma, df = 5 )

> class(marketDistribution)

[1] "mvdistribution"
attr(,"package")
[1] "BLCOP"
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The class mvdistribution works with R multivariate probabilty distribution “suffixes”. mt is the R
“name”/“suffix” of the multivariate Student-t as found in the package mnormt. That is, the sampling
function is given by rmt, the density by dmt, and so on. The other parameters are those required by
the these functions to fully parametrize the multivariate Student-t. The distribution class works with
univariate distributions in a similar way and is used to create the view distributions. We continue with
the above example by creating a single view on the DAX.

> pick <- matrix(0, ncol = 4, nrow = 1,

+ dimnames = list(NULL, c("SP", "FTSE", "CAC", "DAX")))

> pick[1,"DAX"] <- 1

> viewDist <- list(distribution("unif", min = -0.02, max = 0))

> views <- COPViews(pick, viewDist = viewDist, confidences = 0.2,

+ assetNames = c("SP", "FTSE", "CAC", "DAX"))

As can be seen, the view distributions are given as a list of distribution class objects, and the
confidences set the tau’s described previously. Here we have assigned a U(−0.02, 0) distribution to our
view with confidence 0.2. Additional views can be added with addCOPViews.

> newPick <- matrix(0, 1, 2)

> dimnames(newPick) <- list(NULL, c("SP", "FTSE"))

> newPick[1,] <- c(1, -1) # add a relative view

> views <- addCOPViews(newPick,

+ list(distribution("norm", mean = 0.05, sd = 0.02)), 0.5, views)

Finally, the posterior is calculated with COPPosterior, and the updated marginal distributions can be
visualized with densityPlots once again. The calculation is performed by simulation, based on the
ideas described in [Me06]. The simulations of the posterior distribution are stored in the posteriorSims
of the class COPResult that is returned by COPPosterior.

> marketPosterior <- COPPosterior(marketDistribution, views, numSimulations = 50000)

> densityPlots(marketPosterior, assetsSel = 4)
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6 Future developments

While mostly stable, the code is currently in need of some minor cleanup work and refactoring (e.g.
pick matrices are referred to as P in some places and pick in others) as well as improvements in the
documentation and examples. Aside from this, it would be natural to implement a version of the
optimalPortfolios function for COPResult class objects, possibly based on CVaR optimization. Attilio
Meucci has also very recently proposed an even more general view-blending method which he calls
Entropy Pooling and its inclusion would be another obvious extension of this package’s functionality in
the longer term.
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