UseR! 2007 Conference Iowa State University, Ames, Iowa

"Experiences using R to teach undergraduate statistics courses" Philip Turk

Department of Mathematics & Statistics

Flagstaff, Arizona

Background

- I've taught a variety of undergraduate statistics courses at three different medium-sized state universities
 - These have included elementary and intermediate statistics, probability, sampling, ANOVA, regression, time series, and statistical methods
- My goal has been to integrate the use of R as a key structural component of these courses
- In the next 20 minutes, I will briefly show you how I have tried to accomplish this goal

The Introduction to R

- I've written a handout that contains the following sections:
 - Obtaining and Installing R
 - Getting Help in R
 - Ending an R Session
 - Enhancing and Saving Graphics
 - Summary of R Commands
 - Creating a Data File
 - Elementary R Programs
 - Hints and Reminders on R
 - I'd be happy to email you a copy of this:
 - Philip.Turk@nau.edu

Recommended Books

- Introductory Statistics with R", Peter Dalgaard
- "Using R for Introductory Statistics", John Verzani
- Honorable Mention:
 - "Linear Models with R", Julian Faraway
 - An R and S-PLUS Companion to Applied Regression", John Fox

Generic Example From My Lecture Notes

8.3.1 R Program - Measures of Central Tendency

The following data are from Zar (p. 22), 4th edition. They consist of a sample of 24 from a population of butterfly wing lengths.

Table 8.9 displays an R program that computes descriptive statistics that are measures of central tendency using the previous data set.

Table 8.9: R Program to Obtain Measures of Central Tendency

Generic Example From My Lecture Notes

The output produced by the code now follows.

4 # Output tells us the mode is 4, which is the seventh unique value
7 # of the sorted data.

4 # Median

3.958333 # Mean

3.963636 # Trimmed Mean

Generic Example From Homework

3. Load the following data set using the R code below:

rainfall.data <- read.table('http://jan.ucc.nau.edu/~stapjt-p/STA570/data/rainfall.txt', header = TRUE)</pre>

The data are also available as a text file on the course web page.

The data represent values of March precipitation for Minneapolis-St. Paul over a period of 30 years. The first column of the text file contains the year index values and is labeled Year; the second column contains the corresponding precipitation amount and is labeled Precipitation.

- (a) Using R, construct a normal probability plot.
- (b) Using your plot, interpret the shape of the distribution of rainfall values. Also, comment on the appropriateness of a normal probability distribution model.
- Give them the R code in the solutions
- Take-home exams were set up in the same fashion

Course Web Page

There are five important links:
"How to Install R" (pdf file)
Data Sets (text files)
R Code (text files)
Link to "Simple R" notes
http://www.math.csi.cuny.edu/Statistics/R/simpleR
Link to CRAN

Example – Introductory Statistics

Example – Statistical Methods

Figure 9.2: Computer Simulation of Flipping a Coin Four Times (100 Trials)

Computer Simulation of Flipping a Coin Four Times

Trials

Example – ANOVA

xstar

Example – Probability

Example – Intermediate Statistics

Example - Sampling

Example – Regression Analysis

The \mathbf{X} matrix and the \mathbf{Y} vector corresponding to a made up example are given below:

	(3.1)		/1	5.5	
$\mathbf{Y} =$	2.3	and $\mathbf{X} =$	1	4.8	
	3.0		1	4.7	
	1.9		1	3.9	
	2.5		1	4.5	
	3.7		1	6.2	
	3.4		1	6.0	
	2.6		1	5.2	
	2.8		1	4.7	
	1.6		1	4.3	
	2.0		1	4.9	•
	2.9		1	5.4	
	2.3		1	5.0	
	3.2		1	6.3	
	1.8		1	4.6	
	1.4		1	4.3	
	2.0		1	5.0	
	3.8		1	5.9	
	2.2		1	4.1	
	1.5	1	$\backslash 1$	4.7	

Example – Regression Analysis

> summary(lm(Y^{*}X[,2]))

Call:

```
lm(formula = Y ~ X[, 2])
```

Residuals:

Min 1Q Median 3Q Max -0.74803 -0.37100 0.01404 0.34792 0.75197

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.6996 0.7268 -2.338 0.0311 *
X[, 2] 0.8399 0.1440 5.831 1.60e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> solve(t(X) %*% X) %*% t(X) %*% Y

Example – Time Series

Problems I've Encountered

- You have to be diligent about monitoring changes
 - E. g. simint in the multcomp package
 - Fix? Use TukeyHSD
 - There is a relatively steep learning curve as opposed to software packages like JMP, Minitab, etc.
 - Fix? A few initial tutorial sessions

Problems I've Encountered

- You may run into instances where more time is spent trying to understand the code than is spent on the actual material!
 - E. g. they never really understood the syntax in nlme
- Be prepared to spend some time debugging code via email and the phone
 Major dependent

Survey - "Did you like it?"

- "Yes, I did like R, it was hard to figure out at first, but it got easier as time and practice continued."
- In general, when the dust had settled, most people felt they liked R
- Some liked it so much, they wrote their own functions, alerted me to new books, etc.

Survey - "What were the good points?"

- "I feel like learning to use R is a very valuable skill and <u>in the end</u> I did like it."
- Some commented on the joy of learning
- Students liked the graphics and felt it facilitated learning course concepts
 - Not doing calculations by hand, e.g. ANOVA, etc.

Survey - "What were the bad points?"

- "At times I felt as though we were just thrown into R – an optional R tutorial in a computer lab outside of class would have benefited me."
- A steep learning curve
 - Giving them code may not be enough
 - Major dependent
- The additional packages

Survey - "Will you use R again?"

- "I do think I will use R again. I would like to get more familiar with the program and I think it's wonderful to have some basic knowledge of a free statistical package."
- Specifically, some students felt they would use it in their careers, their theses, etc.
- Any questions?