Metabolomic and transcriptomic data analysis of Bioplastic-producing *Arabidopsis* **using R, exploRase and GGobi**

Iowa State University

Suh-Yeon Choi, Michael Lawrence, Dianne Cook, Heike Hofmann, Lauralynn Kourtz, Kristi Snell, Basil J. Nikolau and Eve Syrkin Wurtele

Outline

- o Introduction to bioplastic-producing plants
- o Challenges in metabolomic data analysis
- o Development of R based preprocessing tool for metabolomic data analysis
- o Omics data analysis using exploRase

Procedure

Metabolomics data acquisition

Image of the Raw Data

scan (time)

high

Image of the Raw Data

Goal of preprocessing of metabolomics data

- Identify components from peaks in intensity
- Label the components as specific metabolites

Data matrix

Metabolites	WT plant1	PHB plant1	WT plant2]
malate	100	200	110	
citrate	50	25	60	

- •
- •

Limitation of existing tools

- o Larger number of samples used with underlying experimental design
 - Most software analyze the data one by one
- o Larger number of peaks of interest
 - More than ~300 metabolites detected per run
- o No unified method
 - Each software uses their own algorithms
 - No comprehensive software
 - Commercial software ; cannot be shared by biologists
- o Some bioinformatic tools have been developed (AMDIS, XCMS, MZMine, etc), but they are lacking
 - Limited diagnostics, especially interactive visualizations
 - Do not leverage experimental design

Features/goals of new tools

- 1. Automated data processing tool for large set of data (over hundreds samples..)
- 2. Have experimental design information in data processing
- User inspection feature during processing (over replicates, etc...)
- 4. User friendly GUI wizard

Proposed pipeline

Metabolomics data acquisition

Where is the Baseline?

Background correction – existing solution

- AMDIS
 - baseline from a linear regression on all points below the median in the fitting region
 - not robust to high signal
- XCMS
 - Baseline from the second derivative of the filter translates the signal to curvature
 - subtracting linear background
- MathDAMP
 - RBE (Robust Baseline Estimation), a loess smoother that is weighted (Tukey biweight function)
 - robust to outliers (peaks)

Background correction - Loess Baseline Subtraction

- Approach used in MathDAMP
- Fit loess model to the raw profile.
- Needs to be robust to avoid fitting the peaks.
- Iterate loess fits, weighting cases with positive residuals by the Tukey biweight function (Ruckstuhl et al., 2001).

Loess Baseline Fit

After Baseline Subtraction

Metabolomics data acquisition

Peak Detection

- Peaks are local maxima above some cutoff and exceeding adjacent minima by some threshold.
- Cutoff is a global quantile of the residuals.
- The threshold is a multiple of the standard deviation of the (residual) intensities.
- Similar approach to AMDIS.

Considering the Peak Shape

- We expect a peak to have a gaussian shape, so we fit a gaussian function to the neighborhood around each maxima.
- Neighborhoods are not allowed to overlap.
- Fits with extremely large sigma are discarded.
- About 4000 peaks detected per sample.

Example Peak Fits

Slicing and Dicing for the Peaks

Convoluted peak detection

Metabolomics data acquisition

Comparing Samples

- To compare, they need to be aligned.
 - The m/z is assumed to be relatively stable.
 - Retention time likely requires correction, due to instability of the column across runs.
- Peaks between replicates should be consistent.

Retention time correction – existing solutions

- AMDIS RI based (not precise)
- METIDEA AMDIS + selective ion matching
- MetAlign selective ion matching + back and forth..
- XCMS fitting by Gaussian density estimation function

Retention time correction

- Consider the peaks in the TIC (Total Ion Count) profile, the sum over m/z (Krebs et al., 2006).
- Greedily match by the pairwise correlation between spectral intensity vectors
- Fit robust loess to ignore outliers (mismatches).
- Visually explore results using rggobi.

RT Correction Results

GUI : chromatoplot (baseline correction)

Next Steps

- Deconvolution of the peaks
- Matching the peaks across data set
- Identify and quantify the metabolites
 - A scriptable implementation of the methods
 - A biologist-accessible GUI
 - Plenty of interactive graphics for diagnostics
 - Integration with Bioconductor (xcms, MassSpecWavelet)

Metabolites	WT plant1	PHB plant1	WT plant2	
malate	100	200	110	
citrate	50	25	60	

exploRase : Omics data analysis tool

					exploRase 0.10
Eile <u>A</u> nalysis <u>M</u> odeling <u>T</u> ools				biotin.gene: Scatterplot	
Open Project Brush -	Clear Co	👸 lors Sync Colors	ATGeneSearch	Create List	Eile Options
Samples/Treatments	Entity Info Genes F Filter	ormation Proteins Metabolit	es		
biotin.WT.01	color	lists 🔺	ID	diff.bio1.no	
biotin.WT.02 biotin.WT.B1		Biotin-repressed Biotin-repressed	16053_i_at 16054_s_at	-3.517345 -3.409000	
biotin.WT.B2		Biotin-repressed	19171_at	-3.366445	8
WT.no.mean		Biotin-repressed	13212_s_at	-3.132445	
bio1.no.mean		Biotin-repressed	20491_at	-3.049270	<u>6</u>
WT.yes.mean		Biotin-repressed	17681_at	-2.509275	
bio1.yes.mean 🔽		Biotin-repressed	16150_at	-2.399290	4_ <i>M</i> .
Details		Biotin-repressed	19892_at	-2.392825	biol no mean
Lists/Pathways		Biotin-repressed	13449_at	-2.371740	· 2
name		Biotin-activated	18983_s_at	2.625020	At4g125
Biotin-repressed	1	Biotin-activated	15153_at	2.670105	At3g276
Biotin-activated		Biotin-activated	12758_at	2.718725	At2g015: a:
		Biotin-activated	16489_at	2.897850	At5g469
		Biotin-activated	12748_f_at	3.122100	At4g113
		Biotin-activated	12746_i_at	3.351490	At4g113:
		Biotin-activated	15189_s_at	3.411420	At2g428.
	4				diff.bio1.no.mean.bio1.yes.mean
Awaiting your command					<u>l4</u>

• •

- R: <u>http://www.r-project.org/</u>
- RGtk2: <u>http://www.ggobi.org/RGtk2/</u>
- rggobi: <u>http://www.ggobi.org/rggobi/</u>
- ggobi: <u>http://www.ggobi.org/</u>
- exploRase : <u>http://www.metnetdb.org/MetNet_exploRase.htm</u>
- chromatoplots : not available yet

Acknowledgement

Michael Lawrence

Dr. Eun-Kyung Lee

Department of Statistics Prof. Dianne Cook Prof. Heike Hofmann Metabolix. Inc.
Dr. Lauralynn Kourtz
Dr. Kristi Snell

Department of Genetics, Developmental and Cell Biology Prof. Eve Wurtele Suh-Yeon Choi

Department of Biochemistry, Biophysics and Molecular Biology
Prof. Basil Nikolau

Dr. Wenxu Zhou

W.M. Keck Metabolomics Research Lab Dr. Ann Perera