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o Introduction to bioplastic-producing plants

o Challenges in metabolomic data analysis

o Development of R based preprocessing tool 
for metabolomic data analysis 

o Omics data analysis using exploRase
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Bioinformatics: 
What limits bioplastic production in plants?
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Goal of preprocessing of metabolomics data

– Identify components from peaks in intensity
– Label the components as specific metabolites
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Limitation of existing tools

o Larger number of samples used with underlying experimental 
design
– Most software analyze the data one by one

o Larger number of peaks of interest
– More than ~300 metabolites detected per run

o No unified method
– Each software uses their own algorithms
– No comprehensive software
– Commercial software ; cannot be shared by biologists

o Some bioinformatic tools have been developed (AMDIS, 
XCMS, MZMine, etc), but they are lacking
– Limited diagnostics, especially interactive visualizations
– Do not leverage experimental design



1. Automated data processing tool for large 
set of data (over hundreds samples..)

2. Have experimental design information in 
data processing

3. User inspection feature during processing 
(over replicates, etc…)

4. User friendly GUI wizard

Features/goals of new tools



Proposed pipeline



Metabolomics data acquisition

Plant (Treatment) 

Extract 

Separation 
(GC/LC/CE)

Detection
(UV, MS, NMR etc…)

Data 
processing 

Data matrix 

Analysis 

Raw data

Peak detection

Peak deconvolution

Quantification

Peak matching

Identification

Retention time 
Correction

Componentization

Baseline corrections

Quantification

QuantificationFill in missings



Where is the Baseline?

Time

Intensity



Background correction – existing solution

• AMDIS
– baseline from a linear regression on all points 

below the median in the fitting region
– not robust to high signal

• XCMS
– Baseline from the second derivative of the filter 

translates the signal to curvature 
– subtracting linear background

• MathDAMP
– RBE (Robust Baseline Estimation), a loess 

smoother that is weighted (Tukey biweight function)
– robust to outliers (peaks) 



Background correction - Loess Baseline Subtraction

• Approach used in MathDAMP
• Fit loess model to the raw profile. 
• Needs to be robust to avoid fitting the peaks.
• Iterate loess fits, weighting cases with positive 

residuals by the Tukey biweight function (Ruckstuhl 
et al., 2001).



Loess Baseline Fit

XCMS Baseline
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After Baseline Subtraction
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Peak Detection

• Peaks are local maxima 
above some cutoff and 
exceeding adjacent 
minima by some 
threshold.

• Cutoff is a global quantile 
of the residuals.

• The threshold is a multiple 
of the standard deviation 
of the (residual) 
intensities.

• Similar approach to 
AMDIS.

Peak Fit Window



Considering the Peak Shape

• We expect a peak to have a gaussian 
shape, so we fit a gaussian function to the 
neighborhood around each maxima.

• Neighborhoods are not allowed to overlap.
• Fits with extremely large sigma are 

discarded. 
• About 4000 peaks detected per sample.



Example Peak Fits
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Slicing and Dicing for the Peaks
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Convoluted peak detection
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Comparing Samples

• To compare, they need to be aligned.
– The m/z is assumed to be relatively stable.
– Retention time likely requires correction, due to 

instability of the column across runs.
• Peaks between replicates should be consistent.



Retention time correction – existing solutions

• AMDIS – RI based (not precise)
• METIDEA – AMDIS + selective ion matching
• MetAlign – selective ion matching + back 

and forth..
• XCMS – fitting by Gaussian density 

estimation function



Retention time correction

• Consider the peaks in the TIC (Total Ion Count) 
profile, the sum over m/z (Krebs et al., 2006).

• Greedily match by the pairwise correlation 
between spectral intensity vectors

• Fit robust loess to ignore outliers (mismatches).

• Visually explore results using rggobi.



RT Correction Results 



GUI : chromatoplot (baseline correction)
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Next Steps

• Deconvolution of the peaks
• Matching the peaks across data set
• Identify and quantify the metabolites

– A scriptable implementation of the methods
– A biologist-accessible GUI
– Plenty of interactive graphics for diagnostics
– Integration with Bioconductor (xcms,  

MassSpecWavelet) 
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exploRase : Omics data analysis tool

Metabolic 
Network



• R: http://www.r-project.org/
• RGtk2: http://www.ggobi.org/RGtk2/
• rggobi: http://www.ggobi.org/rggobi/
• ggobi: http://www.ggobi.org/
• exploRase : 

http://www.metnetdb.org/MetNet_exploRase.htm
• chromatoplots : not available yet
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