
1 Making BUGS Open

BUGS is a long running software project aiming to make modern MCMC
techniques based on graphical models available to applied
statisticians in an easy to use package. This talk will give an
overview of the structure of OpenBUGS the open source version of the
BUGS software and the tools used in its creation and maintenance.
Interfacing BUGS to R will also be discussed in particular the
possibilities for closer coupling than currently available in the BRugs
package.

2 Adopt a module

Unique once in a life time opertunity. You can choose which
OpenBUGS module you would like to care for. Adopt a module and
you can take a precious piece of software home with you to read
and play with! Hundreds of modules to choose from but many
thousands of BUGS users. Hurry while stocks last!

3 Happy modules

Would an OpenBUGS module be happy with you? Some questions
to ask yourself: what is a module? what is a class? what is an object?
what is a factory object? what is an interface? what is the difference
between client and extension interfaces? why are concrete classes
hidden? what is metaprogramming? what do I do with blue diamonds?
why are trap messages helpful? what is the Hollywood principle of
programming? can I program in C?

4 Myth I

BUGS is one big scary monster

Reality

BUGS is lots of friendly little bits

5 Myth II

BUGS is writen in a strange
complicated language

Reality

Component Pascal is a very simple
powerful language

6 Myth III

BUGS uses strange developement
tools

Reality

BlackBox tools are very simple to
use (they are also free...)

7 Myth IV

Open source software must be
developed in C/C++ using GNU
tools

Reality

Open source software must be
developed in C/C++ using GNU
tools

8 Myth V

Software technology has not
changed in the past 20 years

Reality

There is Microsoft, there is Linux,
there is the Intel based PC
(and the Mac...)

9 How BUGS works

Create lots of objects, wire them
together and then get the objects
to talk to each other.

Need a plan of how to do this

10 The plan

for(j IN 1 : T)

for(i IN 1 : N)

sigma

tau.c

x[j]

Y[i, j]

mu[i, j]

beta[i]alpha[i]

beta.taubeta.calpha0alpha.calpha.tau

11 Bayesian graphical models

The type of plan BUGS
understands is called a bayesian
graphical model.

Bayesian graphical models
describe conditional idependence
assumptions

Give factorization of joint
probability distribution

12 Graphs as (formal) language

model
{

for(i in 1 : N) {
for(j in 1 : T) {

Y[i , j] ~ dnorm(mu[i , j],tau.c)
mu[i , j] <- alpha[i] + beta[i] * (x[j] - xbar)

}
alpha[i] ~ dnorm(alpha.c,alpha.tau)
beta[i] ~ dnorm(beta.c,beta.tau)

}
tau.c ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau.c)
alpha.c ~ dnorm(0.0,1.0E-6)
alpha.tau ~ dgamma(0.001,0.001)
beta.c ~ dnorm(0.0,1.0E-6)

13 Compilation

Turning description in one
language into equivalent
description in another language

Can add extra information

New description can be
executable

14 An analogy

Science program writen in
fortran

Compiled to assembly language

Assembly language - low level
instruction that cause the CPU
to do things

15 An analogy continued

Statistical model writen as a graph

Compiled into inference algorithm

Inference algorithm executed

16 Inference algorithms

Many possibilities

Want good natured algorithm
not fussy about what it is asked
to do.

MCMC simulation good choice

17 MCMC simulation

Generate lots of random numbers

After a bit calculate averages of
these random numbers

Also can calculate quartiles,
kernel densities etc.

18 MCMC simulation continued

iteration

0 5000 10000

a
lp

h
a
.B

a
s
e

-0
.5

0
.5

1
.0

1
.5

iteration

1000 2500 5000 7500 10000

a
lp

h
a
.B

a
s
e

0
.0

0
.5

1
.0

1
.5

mean sd MC_error val2.5pc median val97.5pc start sample

alpha.Base 0.8934 0.1388 0.006738 0.6265 0.8891 1.173 1001 10000

19 The BUGS software

BUGS has to do lots of tasks.

This does not make BUGS one big
scary monster.

BUGS contains subsystems to
perform specific tasks

Each subsystem consists of a
number of modules

Each module is small and easy to
understand

20 Tasks and subsystems

Describing graphical models
Doodle subsystem

Compiling graphical model
Bugs subsystem

Probability calculations
Graph subsystem

MCMC simulation
Updater subsystem

Summary statistics
Samples, Summary, Ranks,
Deviance subsystems

21 Subsystems and modules I

Subsystems can consist of a small
number of modules or a large
number

Samples subsystem is small

SamplesMonitors SamplesIndex SamplesInterface

SamplesFormatted SamplesEmbed SamplesViews

SamplesPlots SamplesCmds SamplesCorrelat

SamplesDensity SamplesDiagnostics SamplesHistory

SamplesQuantiles SamplesTrace

22 Subsystems and modules contd

Graph subsystem is large

GraphRules GraphNodes GraphLogical GraphStochastic

GraphScalar GraphVector GraphUnivariate

GraphMultivariate GraphConjugateMV GraphChain

GraphConstant GraphCompile GraphStack GraphMixture

GraphFlat GraphGeneric GraphBlock

GraphCloglog GraphCut GraphEigenvals GraphGammap

GraphInprod GraphInverse GraphKepler GraphLog

GraphLogdet GraphLogit GraphProbit GraphProduct

GraphRanks GraphPValue GraphSumation GraphTable

GraphFunctional GraphODEmath GraphODElang

GraphPredictive GraphBern GraphBinomial GraphCat

GraphFounder GraphGeometric GraphGEV

GraphHypergeometric GraphMendelian GraphNegbin

GraphPoisson GraphRecessive GraphMultinom

GraphBeta GraphChisqr GraphDbexp GraphExp GraphF

GraphGamma GraphGengamma GraphLogistic

GraphLognorm GraphNormal GraphPareto

GraphPolygene GraphT GraphTrapezium GraphUniform

GraphWeibull GraphWeibullShifted GraphDirichlet

GraphMVNormal GraphMVT GraphRENormal

GraphStochtrend GraphWishart

23 Subsystems and modules II

BUGS consists of 15 subsystems

5 Windows only subsystems

BUGS consists of 263 modules

63 windows only modules

BUGS is a small system

24 Styles of modules in BUGS

Many different styles of module
in BUGS both within and between
subsystems.

Example the BugsNames modules
contains 78 statements, the
BugsInterpreter module contains
20 statements

In general modules either
implement algorithms or they
establish concepts

25 What is a module (in CP)

A module is a package of source
code with a well defined interface

A module is a unit of compilation

A module is a unit of loading

A module knows what services it
provides (syntaxticaly)

A module can make "use" of other
modules

Under the "use" relation modules
are arranged in a DAG

26 Languages other than CP

Weird languages have weird
ideas (they just happened)

Header files

Include

Name spaces

Only classes

main{}

Dynamic link libraries

27 Software developement tools

These tools are never free

These tools are often very complex

These tools often do tasks that are
not needed (or should not be
needed)

Best to use commonly used tools
(it's nice to be in a crowd)

28 Object orientated software I

Objects are the easy bit

Designing the classes is the hard
bit

(Code) Inheritance is evil

Methods should not be extended

Composition is good

29 Object orientated software II

Large class hierarchies can be a
nightmare

Multiple inheritance deepens that
nightmare

Need tools that control the
complexity of the hierarchy

Need IDL to describe software

30 IDL Interface Definition Language

DEFINITION GraphNodes;

TYPE

Factory = POINTER TO ABSTRACT RECORD

(f: Factory) New (option: INTEGER): Node, NEW, ABSTRACT

END;

List = POINTER TO RECORD

node-: Node;

next-: List

END;

Node = POINTER TO ABSTRACT RECORD

props-: SET;

(node: Node) AddParent (VAR list: List), NEW;

(node: Node) Check (): SET, NEW, ABSTRACT;

(node: Node) Init, NEW, ABSTRACT;

(node: Node) Parents (): List, NEW, ABSTRACT;

(node: Node) Representative (): Node, NEW, ABSTRACT;

(node: Node) Set (IN args: Args; OUT res: SET), NEW, ABSTRACT;

(node: Node) SetProps (props: SET), NEW;

(node: Node) Signature (OUT signature: ARRAY OF CHAR), NEW, ABSTRACT;

(node: Node) Size (): INTEGER, NEW, ABSTRACT;

(node: Node) Value (): REAL, NEW, ABSTRACT

END;

Vector = POINTER TO ARRAY OF Node;

Args = ABSTRACT RECORD

valid: BOOLEAN;

(VAR args: Args) Init, NEW, ABSTRACT

END;

PROCEDURE SetFactory (f: Factory);

END GraphNodes.

31 More IDL

DEFINITION GraphLogical;

IMPORT GraphNodes;

TYPE

List = POINTER TO RECORD

node-: Node;

next-: List

END;

Node = POINTER TO ABSTRACT RECORD (GraphNodes.Node)

level-: INTEGER;

parents-: List;

(node: Node) AddToList (VAR list: List), NEW;

(node: Node) CalculateLevel, NEW;

(node: Node) ClassFunction (parent: GraphNodes.Node): INTEGER, NEW,

ABSTRACT;

(node: Node) ClearLevel, NEW;

(node: Node) HandleMsg (msg: INTEGER), NEW, EMPTY;

(node: Node) Init;

(node: Node) Optimize (parent: GraphNodes.Node), NEW, EMPTY;

(node: Node) StoreParents, NEW

END;

Vector = POINTER TO ARRAY OF Node;

Args = RECORD (GraphNodes.Args)

numConsts, numOps, numScalars, numVectors: INTEGER;

consts: ARRAY 50 OF REAL;

scalars: ARRAY 50 OF GraphNodes.Node;

ops: ARRAY 100 OF INTEGER;

vectors: ARRAY 10 OF GraphNodes.SubVector;

(VAR args: Args) Init

END;

PROCEDURE Ancestors (node: GraphNodes.Node): List;

END GraphLogical.

32 Metaprogramming

Self awareness for software

Software can ask itself questions

Is there an item called FooBar?

What sort of item is FooBar?

Do this with item FooBar

33 Metaprogramming cont

Can ask if a module of given name
is loaded and if so to return its
metadata

Can ask to load a module of given
name and return its metadata

Can ask a module's metadata if it
contains an item with a given
name and type

Modules metadata limited to what
is in the modules inteface

34 Metaprogramming example

DEFINITION GraphT;

IMPORT GraphNodes;

VAR fact-: GraphNodes.Factory;

PROCEDURE Install;

END GraphT.

Can ask to load module GraphT
and return its metadata

Can ask metadata if there is a
procedure called Install (with
signiture no arguments)

Can ask to execute the Install
procedure

35 Metaprogramming and BUGS

Used in many places

To support the BUGS language

To load sampling algorithms

To load data reading algorithms

To construct GUI interface

To implement scripting

To interface to R

36 BUGS language support

Grammar file (snipet)

dbern "GraphBern.Install"
dbeta "GraphBeta.Install"
dbin "GraphBinomial.Install"
dcat "GraphCat.Install"
dchisqr "GraphChisqr.Install"
ddexp "GraphDbexp.Install"
dexp "GraphExp.Install"
dnorm "GraphNormal.Install"
dt "GraphT.Install"

37 GUI and BUGS

Definition BugsCmds;

TYPE
UpdateDialog = POINTER TO RECORD

iteration-, refresh, thin, updates: INTEGER;
isAdapting-, overRelax: BOOLEAN

END;

VAR updateDialog: UpdateDialog;

PROCEDURE Update;

PROCEDURE UpdateGuardWin (VAR par: Dialog.Par);

1000 100upd refr

update 0iter
over relaxadapting

1thi

38 Scripting and BUGS

modelCheck(^0) --->

"BugsCmds.SetFilePath('^0'); BugsCmds.ParseGuard;
BugsCmds.ParseFile"

modelUpdate(^0) -->

"BugsCmds.updateDialog.updates := ^0;
BugsCmds.UpdateGuard; BugsCmds.Update"

samplesStats(^0) -->

"SamplesCmds.SetVariable('^0'); SamplesCmds.StatsGuard;
SamplesCmds.Stats"

39 R and BUGS makes BRugs

R has a nice paste function

R can talk to dynamic link libraries

Dynamic link library can use
metaprogramming to talk to
BUGS

Few technical problems: heap
management most difficult

BRugs package up on CRAN
thanks to Uwe and Sibyle

40 R and BUGS's Guts

New OpenBUGS module BugsRobjects to help R see
and interact with OpenBUGS internal data structures

Can set node values

Can look at node values

Can program higher level algorithms in R

Can load data / inits from R objects
(no need for textual representation)

41 Adopt a module (please)

BUGS has become OpenBUGS

Open source software needs
active developers

OpenBUGS is small and friendly
(just don't mention C)

You can make a difference --
take a module home today!

