Roche

IFCC

Diagnostics

Diagnostics

- IFCC¹ HbA1c² standardization network
- Statistical analysis
- Implementation
- References

Outline

useR! 2006

¹International Federation of Clinical Chemistry ² ²beta-n terminal glycated hemoglobin A

Diagnostics

IFCC HbA1c standardization network

- Working group of the IFCC to develop a worldwide standard, to which all HbA1c assays are traceable.
- Development of a very specific reference measurement method for the determination of HbA1c, value assignment to HbA1c standards.
- Installation of a worldwide network of reference laboratories. HbA1c standards are measured in each laboratory, reported values are combined to assigned value of the standard.
- Need for a software for the automatic analysis of the data of this laboratory network.

Roche

LabNetAnalysis – An instrument for the analysis of data from laboratory networks based on RExcel

Andrea Konnert, Carla Siebelder

Fachbereich Statistik, Universität Dortmund, Dortmund, Germany Biostatistics Department, Roche Diagnostics GmbH, Penzberg, Germany Email: andrea.konnert@roche.com Queen Beatrix Hospital, Winterswijk, The Netherlands

HbA1c

- HbA0 Hemoglobin, HbA1c glycated hemoglobin
- Most important biochemical marker for the monitoring of the glychemic status of patients with diabetes mellitus.
- Measurements are based on national standards, e.g. in USA, Japan, Europe. Differences in the specificity of the reference methods lead to different HbA1c levels. (5 USA-HbA1c% are about 3 Europe – HbA1c %).

3

• Changes of 0.5% HbA1c may lead to changes in therapy.

Production of primary calibrators

Boche Diagnostics

Identification of mayor uncertainty sources.

Different data sources and formats.

Standardization of data input.

useR! 2006

Effective of Personal Production

Standardized input and output sheet

7

Diagnostics

Roche

Approval of laboratories

- Diagnostics
- Laboratories, being members of the network need to be controlled, candidate laboratories need to be approved.
- Comparison of the measured values of the respective laboratory of multiple samples with the values of the other laboratories.
- Random coefficient model, based on the lab-specific values, versus the overall median of each sample. Estimation of lab-specific intercept and slope.
- Estimated lab-specific intercept and slopes will naturally differ in a certain range, differences above this threshold are not accepted.

8

useR! 2006

Approval of laboratories

Based on historical data, a confidence ellipse, representing the natural variation of intercept and slope was derived. Laboratories outside this ellipse are not approved. IFCC useR! 2006

Approval of laboratories 0.02504 0.132502 023524 0 140392 Approval Lab Elliptic (Study Orlando-2) 0.021985 0.148143 0.020423 0.155746 0.018841 0.163194 0.4 0.017241 0.170479 0.015623 0.177594 • lab_01 0.3 • lab_02 013989 0.184530 0.012342 0.191286 • lab_03a 0.2 0.010682 0.19785 • lab 038 0.009012 0.204216 Bias • lab_06 007333 0.21037 0.005646 0.21633 Iab 07 Systematic I n nn 3954 in 222069 **a** lab 08 002258 0.22758 <mark>=</mark> lab_09 0.000559 0.232874 Coordinates in R ∎ lab_10 0.00114 0.23793 ≡lab_12 -0 00284 D 242751 0.00453 0.247329 ▲ lab_13 -0.2 -0.00622 0.25168 ▲ lab_16 0.00791 0.25574 ▲ lab_17a -0.3 -0.00958 0.259568 ▲ lab_17b -0.01125 0.263133 -0.01291 0.266438 -0.4 -0.01455 0.269476 -0.01618 0.272247

0.02

0.04

Import IFCC Calculate All Sheets Graphics Unprotect

10

0.06

-0.01779 0.274746 -0.01938 0.276971

-0.02096 0.27892 -0.02251 0.28059

-0.02404 0.281982 -0.02555 0.283092

Diagnostics Creation of Graphics in Excel Calculation of

Roche

Roche

Master data handling

-0.04

-0.08

useR! 2006

-0.02

III → ▶ N// ME Relation / OutliersL1 / OutliersL2 / PCAL / RegLinesPerLab ApprovalLabElliptic / ResidualsPerl ▲

Proportional Bias

- Diagnostics
- · For some parts of the analysis master data is needed, e.g. data derived from previous studies.
 - For example the shape of the ellipse for laboratory approval
- · Input of this data over Excel sheet, saving of the data in .RData files in specified folder.

12

During the analysis this data is imported by R.

Roche

Diagnostics

User handling

• Specification of folders with

- Data of the primary calibrators
- Data of the IFCC laboratories
- Data of the DCM laboratories
- Master data files
- · On one click the whole analysis is carried out.
- Excel sheets with results and graphics are inserted in the respective file.

13

useR! 2006

Diagnostics

Roche

Diagnostics

References

- Konnert A., Berding C., Arends S., et.al., Statistical rules for laboratory networks, JTEV, 32, 2006
- Konnert A., Arends S., Schubert S., et.al., Uncertainty calculation for calibrators of the IFCC HbA1c standardization network, Accred.Qual.Ass., 2006
- http://www.cran.r-project.org/
- http://www.cran.r-project.org/ -> Others -> R DCOM

Conclusions

 The connection between R and Excel, by RExcel, provides a good interface to meet the requirements of end-user and statistician for routine-fashioned data analysis.

Roche

Diagnostics

- Standardized data-handling, data-flow and reporting.
- User-friendly handling.
- Full repertoire of statistical methods, easy adaption of "development" function in R, to "production" functions.

