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Introduction

I Until version 2.1.0, R had limited support for multivariate
tests

I Repeated measurements similar to those in SAS/SPSS
seems to have some value

I Therefore, it would be worthwhile to extend R’s capabilities
to handle contrast tests, as well as the
Greenhouse-Geisser and Huynh-Feldt epsilons.

Introduction

I Until version 2.1.0, R had limited support for multivariate
tests

I Repeated measurements similar to those in SAS/SPSS
seems to have some value

I Therefore, it would be worthwhile to extend R’s capabilities
to handle contrast tests, as well as the
Greenhouse-Geisser and Huynh-Feldt epsilons.

Introduction

I Until version 2.1.0, R had limited support for multivariate
tests

I Repeated measurements similar to those in SAS/SPSS
seems to have some value

I Therefore, it would be worthwhile to extend R’s capabilities
to handle contrast tests, as well as the
Greenhouse-Geisser and Huynh-Feldt epsilons.



Theoretical Setting

Multivariate normal model:

Y ∼ N(ΞB, I ⊗ Σ)

I Y is N × p matrix
I Rows yi of Y are independent with same covariance Σ

I Ξ is a design matrix (sorry, I used X for other purposes. . . )
I Same linear model for all p coordinates (separate

parameters in columns of B)
I For convenience, we refer to the rows of Y as “subjects”.
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Standard test procedures

1. Reduce mean value structure, same for all coordinates:
Look at

MS−1
resMSeff

(generalized F test)
Multiple ways of turning this matrix into a test statistic:
Wilks’ Λ (LRT), Pillai trace, Hotelling-Lawley, Roy’s greatest
root. All are different combinations of the eigenvalues.

2. Test that Σ is proportional to Σ0 (usually I): Mauchly’s test
of sphericity.

3. Test mean value structure, assuming that the variance is
known up to a constant: This is GLS and leads to an F test
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Within-Subject Contrasts

I You often need to consider a transformation of responses
I If coordinates are repeated measures, you might wish to

test for “no change over time” or “same changes over time
in different groups” (profile analysis). This leads to the
analysis of within-subject contrasts.

I Also, in a mixed-model setting, the subject effect will
cancel out in the contrasts, whose distribution may then be
assumed to satisfy a sphericity condition.
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More General Transformations

I Similar notions carry over to more elaborate within-subject
designs

I E.g. a two-way layout and then look at
I Contrasts between row means
I Contrasts between column means
I Interaction contrasts

I Variance component model with “all terms containing
subject considered random” implies sphericity of each of
the above (with different constants)
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Notation for transformations

I Looking at YT ′ (which has rows Tyi).
I In simple cases T maps onto the quotient space over some

subspace X, i.e. TX = 0.
I For profile analysis, X is spanned by a p-vector of ones. In

that case, the hypothesis of compound symmetry implies
sphericity of TΣT ′ w.r.t. TΣ0T ′

I In the more complicated cases, you also want to
pre-transform data, i.e. take means first, then differences
of means, this will usually involve the orthogonal projection
onto a “model subspace” M
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Representing transformations

I The code has several ways to deal with this:
I The transformation matrix T can be given directly
I Or it can be given as T = PM − PX where the P are

projections onto two nested subspaces.
I (In either case, T needs to be thinned by deletion of

linearly dependent rows)
I The subspaces M and X can be given as matrices or as

model formulas. In the latter case, they need to refer to an
intra-subject data frame.
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Epsilons

I Suppose you do the F tests under the assumption of
sphericity, but sphericity doesn’t quite hold

I Box 1954: F is approximately distributed as F(εf1, εf2),
where

ε =

∑
λ2

i /p
(
∑

λi/p)2

and the λ are the eigenvalues of the true covariance
matrix. (Notice that 1/p ≤ ε ≤ 1)

I The Greenhouse-Geisser εGG is the empirical verson of ε
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Corrected epsilon

I The empirical version of ε is biased
I The Huynh-Feldt correction is

εHF =
(f + 1)pεGG − 2

p(f − pεGG)

where f is the number of degrees of freedom for the SSD
matrix.

I (SAS appears to be using N instead of f + 1 in the
numerator, which must be an error.)
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Implementation

I Most of the calculations were based on the existing
manova and summary.manova code for balanced
designs.

I Added code:
I mauchly.test
I sphericity (hidden) to calculate the ε
I anova.mlm to compare two multivariate linear models (and

also partition a single model)
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Example

reacttime <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
....
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = TRUE,
dimnames=list(subj=1:10,

cond=c("deg0NA", "deg4NA", "deg8NA",
"deg0NP", "deg4NP", "deg8NP")))

Demo

mlmfit <- lm(reacttime~1)
mlmfit0 <- update(mlmfit, ~0)
anova(mlmfit, mlmfit0, X=~1)
anova(mlmfit, mlmfit0, X=~1, test="Spherical")

idata <- data.frame(deg=gl(3,1,6,labels=c(0,4,8)),
noise=gl(2,3,6,labels=c("A","P")))

anova(mlmfit, mlmfit0, X = ~ deg + noise,
idata = idata, test = "Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ noise,
idata = idata, test="Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ deg,
idata = idata, test="Spherical")


