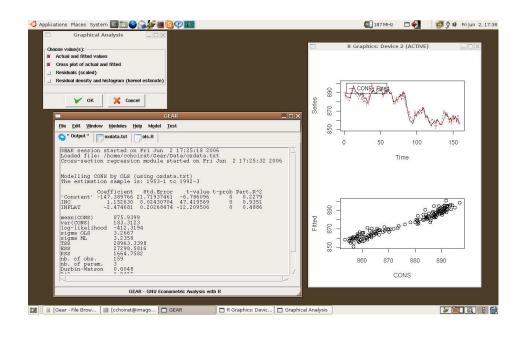
GEAR: GNU Econometric Analysis with R


Christine Choirat (Varese, Italy and Pamplona, Spain) Paolo Paruolo (Varese, Italy) Raffaello Seri (Varese, Italy)

useR! 2006, Vienna, 2006-06-17

A first glance

1

2

Why another project?

We started the GEAR project from the observation that the econometric community and more generally the applied economics community lack a free, advanced and extensible software.

The available software for performing econometric analysis can be roughly divided in two classes:

1. Languages. Gauss and Ox are two common choices. Both are commercial products. They are high-level matrix languages and provide libraries oriented towards Econometrics.

 Environments. Most econometric packages are commercial, the most popular at the moment being GiveWin (renamed OxMetrics) and its modules (PcGive in particular), and EViews .

\begin{controversy}

Gretl is free, cross-platform and released under the GPL. It is ready for undergraduate use, but a lot remains to be done for more advanced users and extensions are hard to implement. \end{controversy}

What R already provides

- Obviously, R can already be used for econometrics (for a review, see Cribari-Neto and Zarkos, 1999, Racine and Hyndman, 2002, Farnsworth, 2006 and A. Zeileis' CRAN task view for computational econometrics).
- However, the econometric models are implemented in a nonsystematic way (moreover by independent authors so that many econometric methods are lacking whilst others are redundant).

Our requirements

GEAR (standing for "GNU Econometric Analysis with $\mbox{R}"\,)$ is meant to be both:

- a program with a graphical user interface (when performing standard tasks),
- a set of libraries (for more advanced analysis). It would ideally become a free and open-source alternative to EViews and GiveWin but also to Gauss and Ox.

It is really cross-platform (MS Windows, Mac OSX with X11 and Aqua, several Linux and Unix flavors).

4

What has been done yet?

Implementation choices

- Underlying language. We come from distinct econometric backgrounds (respectively 1. Ox, 2. Gauss and EViews, 3. RATS). R was chosen after some discussion (C++ and Python were other serious challengers) in late 2002 when we started the project. GEAR is entirely written in R (except for computer-intensive tasks which are coded as DLL's).
- GUI library. The choice was very hard and is still object of many discussions. At the time we started:
 - a free (in the sense of beer) version of Qt was only available for Linux,
 - 7

- GTK was rudimentary on Windows and not available on Mac OS X,
- wxWidgets (which was called wxWindows in these days...)
 could have been an excellent choice, but the interface with
 R was far from being easy (even with the Python step).
- Not convinced by any type of C or C++ GUI library, we decided to use the good old Tcl/Tk and the work of Peter Dalgaard on the package tcltk (Rcmdr by John Fox was a proof that a useful and rich GUI application could be developed). We found out that more sophisticated widgets were needed, in particular the classical extensions BWidgets and TkTable.
- It might change in the future, especially in favor of wxWidgets.

Libraries: Model-driven approach

• An econometric model is represented as an R environment.

eModel\$sFile <- ``/home/user/data.csv'' # data name on disk
eModel\$bModified <- FALSE # has data been modified?
eModel\$sMethod <- ``OLS'' # estimation method
eModel\$asX <- c(``INC'', ``INFLAT'') # explanatory variable names
eModel\$sY <- ``CONS'' # dependent variable name
eModel\$bConstant <- TRUE # is there an intercept?</pre>

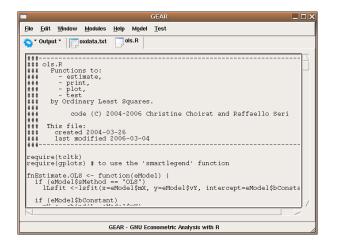
eFit <- fnEstimate.OLS(eModel) # estimation
fnPlot.OLS(eFit) # plots</pre>

- The basic tools provided by GEAR take the form of a standard R package gear-main (except from the requirement that the additional Tcl/Tk packages have to be installed for example using the ActiveTcl bundle and that an environment variable has to be defined under Windows).
- Specialized tools also take the form of standard R packages (*e.g.* gear-coint for cointegration analysis or gear-panel for panel data analysis) that depend on gear-main.

- We have written utilities to save and load models in a humanreadable way (using the functions dput and dget)
- The benefits of using the R.oo package will be further investigated.

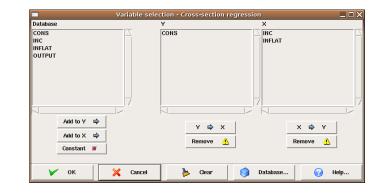
GUI: Tcl/Tk interface

- Many unfruitful attempts. In particular IWidgets (problems with portability across different Linux distributions) and the MDI proposed by mkWidgets.
- The GUI is based on the NoteBook provided by BWidgets.


Output tab

GEAR	>					
<u>File E</u> dit <u>Wi</u> ndow <u>M</u> odules <u>H</u> elp M <u>o</u> del <u>T</u> est						
S * Output *						
GEAR session started on Fri Jun 2 17:25:18 2006 Loaded file: /home/cchoirat/Gear/Data/oxdata.txt Cross-section regression module started on Fri Jun 2 17:25:32 2006						
Modelling CONS by OLS (using oxdata.txt) The estimation sample is: 1953-1 to 1992-3						
Coefficient Std.Error t-value t-prob Part.R^2 'Constant' -147.389766 21.71937461 -6.786096 0 0.2279 INC 1.15250 0.02430704 47.419569 0 0.39351 INFLAT -2.474681 0.20268474 -12.209506 0 0.4886						
mean (CONS) 875.9399 Var(CONS) 183.3123 Juar(CONS) 18.3123 Juar(CONS) 19.3123 Juar(CONS) 19.3123 Juar(CONS) 19.3123 Juar(CONS) 19.3123 Sigma OLS 2.2667 TSS 2.963.3398 ESS 2.7298.5816 ESS 1664.7582						
nb. of param. 3 Durbin-Matson 0.6048	/					
GEAR - GNU Econometric Analysis with R						

Spreadsheet tab


File Edit Window	Modules <u>H</u> elp M xdata.txt ols.l	l <u>o</u> del <u>T</u> est		
S outhor				
<u>File D</u> isplay D <u>a</u>	ta <u>H</u> elp			
895.776916504		ок		
000.110010001	CONS	INC	INFLAT	OUTPUT
	890.45	908.21	3.6595	1203.8
	886.54	900.68	2,7649	1200.4
	886.33	699.6	2.521	1193.6
	884.88	898.48	1.717	1193
	885.25	895.78	0.9729	1194.1
	884.53	894.83	0.676	1191
	884.44	892.74	0.1739	1191.5
	884.31	892.77	-0.3302	1195.3
	887.43	896.97	-0.4645	1195.5
	889.56	901.41	-0.3819	1198.2
	890.66	901.48	-0.2016	1199.2
	894.08	905.12	0.1956	1203.9
	896.83	908.39	0.5363	1211.3
	894.98	906.22	1.75	1207.3
	893.61	905.94	2.3436	1201.8
2000	000.01	000.04	2.0400	1201.0

Viewer tab

13

Variable selection (cross-section regression)

14

A word on interactive graphics

GEAR						
<u>F</u> ile <u>E</u> dit <u>W</u> indow <u>M</u> odules <u>H</u> elp M <u>o</u> del <u>T</u> est						
💊 * Output * 🛛 🕂 Plot *						
<u>P</u> lot <u>S</u> ave <u>H</u> elp						
eModel = model_1 eFit = eFit_1 asPlotTypes = c("time-series", "residuals") ## You can add extra-options here.	A					
	2					
GEAR - GNU Econometric Analysis with R						

What still has to be done?

A realistic answer is: "a lot..."! First, more modules need to be completed (of course borrowing a lot from what is already available but not limiting ourselves to writing wrappers):

- univariate time series,
- simultaneous equations,
- database interface,
- multivariate time series,

- financial econometrics,
- panel data.

More generally...

- 1. From a structural viewpoint
 - More OO paradigm.
 - Website, specific documentation.
 - Translations.

- 2. From a cosmetic viewpoint
 - Much polishing is needed (in particular extensive testing under MS Windows).
 - Artistic material (*e.g.* specific icons) is lacking.
 - Tk extras: ctext for syntax highlighting, more keyboard shorcuts.
 - Export output to HTML or \square TEX.