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1 Introduction

How much more evidence is there in a ‘highly significant’ p-value of 0.01
relative to one ‘just significant’ at 0.05? Why does the replication of an
experiment lead, on average, to a higher p-value than the one just obtained?
To answer such questions one must go beyond the traditional p-value which
is conditional on the data and thus interpretable only in the context of the
experiment just performed. One can achieve this by considering the random
p-value which has a uniform distribution under the null hypothesis but a
highly skewed distribution under alternative hypotheses.

When considered as a random variable, the p-value becomes another test
statistic, and thus one can ask, which test statistic, if not the p-value, best
captures the notion of ‘evidence’ ? Morgethaler and Staudte (2005) suggest
that the answer is a transformation which takes the test statistic into evidence
T which has a normal distribution with mean τ and variance 1 for all values
of the distributional parameters of the test statistic. The mean evidence τ
should grow from 0 as the alternative moves away from the null; and, further,
for a fixed alternative should grow at the same rate as the alternative can
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be estimated, typically the square root of the sample size. The advantages
of variance stabilization have long been appreciated by statisticians, (see
Anscombe (1948) and Efron (1982), for example. They include small sample
normal approximations, and confidence intervals for τ which can easily be
transformed into confidence intervals for a model parameter.

2 Calibrating the evidence in p-values

For definiteness consider the simple model in which the test statistic is the
sample mean X̄n having the normal distribution with unknown mean µ and
standard deviation 1/

√
n . For testing µ = 0 against µ > 0 the random

p-value is PV = Φ(−√nX̄n). The probit transformation p → Φ−1(1 − p)
clearly transforms PV to T =

√
nX̄n which has the normal distribution with

mean τ =
√

nµ and variance 1, thus satisfying for any µ > 0 the desirable
properties of evidence (see E1 − E4 below).

Instead of reporting a p-value of 0.05, we advocate reporting evidence
T = 1.645, plus or minus standard error 1. Further, on this scale a p-value
of 0.01 is reported as 2.33, plus or minus standard error 1. So 0.01 reflects
only about 41% more evidence than 0.01 in this example, subject to equal
standard errors of 1. To obtain twice the expected evidence, a p-value of
0.0005 is required. This is more in keeping with what Bayesian statisticians
have been arguing for years, although a recent (Selke, Bayarri and Berger,
2001) Bayesian calibration scale for the p-value, when examined from the
point of view espoused here, shows that posterior probabilities of the null
underestimate the expected evidence in the p-value by at least one standard
deviation over the range of interest.

In the context of Neyman Pearson hypothesis testing, the expected evi-
dence is simply the sum of the probits of the false positive and false negative
rates, so once the expected evidence is found, a formula for the power func-
tion of a test can be deduced. In addition, bits of evidence on the probit
scale are easily combined, facilitating the computation and interpretation
of evidence for joint alternatives in multiple related experiments. Standard
meta-analytic theory applies, but with known weights, which circumvents a
major problem in meta-analysis.

Evidence for the two-sided alternative µ 6= 0 is not simply Φ−1(1 − p±),
where p± = 2Φ(−√n|X̄n|) is the two-sided p-value, for this transformation is
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not variance stabilized, having a singularity at X̄n = 0. However, the trans-
formation p± → T± = max{0, Φ−1(1 − p±)} is ‘nearly’ variance stabilized.
This example raises the question of how general is the calibration scale.

3 Calibration of evidence

Let θ be an unknown effect for which it is desired to test θ = 0 against θ > 0,
and let S be a test statistic which rejects H0 for large values of S. We want
a measure of one-sided evidence T to satisfy:

E1. The one-sided evidence T is a monotone increasing function of S;

E2. the distribution of T is normal for all values of the unknown parameters;

E3. the variance Var[T ] = 1 for all values of the unknown parameters; and

E4. the expected evidence τ = τ(θ) = Eθ[T ] is monotone increasing in θ
from τ(0) = 0.

In the simple example of a normal model with known variance all of the
above properties hold exactly for evidence defined by the Z-test statistic;
that is, the standardized effect. In general, properties E2−E4 will hold only
approximately, but to a surprising degree, even for small sample sizes.

We somewhat arbitrarily describe values of T near 1.645 as weak evidence
against the null. Values of T which are twice as large we call moderate
evidence, and values which are 3 times as large as strong evidence. Thus our
definition of weak evidence follows Fisher’s low standard when the null is
true, but we are otherwise measuring evidence against the null on a different
calibration scale, one which allows for interpretation whether or not the null
hypothesis holds.

4 Example

Let X have the Binomial(n, p) distribution, with 0 < p < 1. For testing
p = p0 against p > p0, The classical transformation an(p) = 2

√
n arcsin(

√
p)

with p̃ = (X +3/8)/(n+3/4) does have an approximate normal distribution,
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with unit variance (see p. 123, Johnson, Kotz and Kemp, 1995). Therefore we
define the evidence against the null hypothesis for this one-sided alternative
by T = an(p̃)− an(p0). Then, at least approximately, T is unit normal with
expected value

τ(p) = En,p[ T ] ≈ {an(p)− an(p0)} − p− 0.5

2
√

np(1− p)
. (1)

This T roughly satisfies properties E1−E4. As an example, when n = 9,
this two-term approximation to τ = E9,p[ T ] shown above is accurate to 0.05
for all p ≥ 0.5 and the standard deviation SD9,p[ T ] is within 0.05 of the
target 1 for all 0.5 ≤ p ≤ 0.8.

The maximum amount of evidence in a Binomial(n, p) experiment against
p = 0.5 in favor of p > 0.5 occurs when X = n and is Tmax(n) ≈ √

n π/2.
Thus to obtain ‘strong’ evidence against the null, the minimum sample size
one needs must satisfy 5 ≈ √

n π/2, or n = 10, and then one must observe
X = 10. In the orthodox view, this sounds fairly difficult, for the p-value of
this event would be 2−10 ≈ 0.001. But the p-value is computed under the
null, and the null may well be false.

Many other examples of variance stabilizing transformations for test statis-
tics are available in the references given below, but the requirements for a
measure of evidence E1−E4 are somewhat stronger. They make it easier to
interpret evidence, to compare evidence obtained from different experiments,
and to obtain simple confidence intervals for τ which can be converted into
intervals for θ.

5 Evidence for heterogeneity

Given K studies measuring potentially different effects θk, for k = 1, . . . , K
one often tests the null hypothesis of equal effects, or homogeneity, with an
asymptotic Chi-squared test based on Q =

∑
k wk(θ̂k− θ̂w)2; Cochran (1954).

Unfortunately, when the weights in Q need to be estimated, the distri-
bution of Q converges extremely slowly to its limit. But suppose it is pos-
sible to find evidence in the kth study Tk ∼ N(τk, 1), where τk =

√
nk mk,

mk = m(θk) and m is a monotone function free of k. Also let m̄ =
∑

nkmk/N
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be the weighted transformed effect, where N =
∑

k nk. Then mk can be es-
timated by m̂k = Tk/

√
nk and Cochran’s Q =

∑
k nk(m̂k − ˆ̄m)2; it measures

heterogeneity of the mk’s directly, and of the θk’s indirectly. Moreover this
Q ∼ χ2

K−1(λQ), with λQ =
∑

k nk(mk − m̄)2.
A variance stabilizing transformation of this Q to evidence is given by

TQ = {Q−ν/2}1/2−{ν/2}1/2, which satisfies TQ ∼ N(E[TQ], 1) with E[TQ] =
{λQ + ν/2}1/2 − {ν/2}1/2. This TQ satisfies E1 − E4 approximately, and is
therefore a measure of evidence for heterogeneity.

6 Combinations of evidence on the probit scale

How one combines evidence in T = (T1, . . . , TK) obtained in K studies de-
pends on how much evidence TQ one finds for heterogeneity of the θk’s and
on what specific alternative to the joint null θ1 = θ2 = . . . = θK one wants
evidence for. If there is only weak evidence for heterogeneity, one can assume
the standard fixed effects model (all θk = θ) and find the evidence for θ > 0
using Tw =

∑
k

√
wk Tk, where

∑
k wk = 1. Then, because τk =

√
nk m(θ),

Tw ∼ N(τw, 1) with τw =
∑

k

√
wk τk = m(θ)

∑
k

√
wknk. A possible choice

for wk = nk /N . Obvious confidence intervals for τw are easily transformed
into intervals for θ, if desired.

If one chooses a fixed, but unequal effects model then there are several
possible alternative hypotheses. For example, one can define an overall effect
as the θ which transforms into a weighted average of the transformed effects
m1, . . . , mK and find evidence for θ > 0. This methodology is illustrated for
one- and two-sample t-tests in Kulinskaya and Staudte (2006). Finally, one
can assume a random transformed effects model which introduces a variance
component on the range of the map m. Then inference on µ = m(θ) can be
carried out and transformed back into inference for θ = m−1(µ).

7 Summary

By means of variance stabilization, many routine test statistics can be trans-
formed onto a calibration scale that allows for easy interpretation of results,
and comparison and combination of evidence obtained in similar independent
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experiments. While the proposed framework only leads to measures of evi-
dence which are approximately normal, this has not been a hindrance to the
greater goals of interpretation, combination and repeatability of evidence. It
is basically a meta-analytic framework with known weights.
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