

Running R Faster
Tomas Kalibera

My background: computer scientist, R user.

● New algorithms, optimizations help
– Frame representation, variable lookup

– Function calls and argument matching

– Specialized data types

– Code specialization

– Lazy arithmetics with profiling views

● Implementing a new R VM is hard
– Specification

– Tightly coupled packages and the VM

My FastR experience:
Implementing a new R VM in Java.

VEE'14: A fast abstract syntax tree interpreter for R

My current work: speeding-up GNU-R.

github.com/kalibera/rexp
Based on R-dev 65969 (June 18), check-all passes.

ML benchmarks from TU Dortmund

With Luke Tierney, Jan Vitek

github.com/kalibera/rexp

Shootout benchmarks

github.com/kalibera/rexp

AT&T Benchmarks (Benchmark 25)

Compiler bytecode-optimizations.

● Inlining constants into bytecode
● Inlining labels into bytecode

function(x) {
 for(i in 1:10) { x <- x + 1 }
 x
}

 LDCONST.OP, 1L,
 STARTFOR.OP, 3L, 2L, 16L,
 7: GETVAR.OP, 4L,
 LDCONST.OP, 5L,
 ADD.OP, 6L,
 SETVAR.OP, 4L,
 POP.OP,
16: STEPFOR.OP, 7L,
 ENDFOR.OP,
 POP.OP,
 GETVAR.OP, 4L,
 RETURN.OP

1: 1:10,
2: i,
3: for (i in 1:10) { x <- x + 1 },
4: x,
5: 1,
6: x + 1

Compiler optimizations – variable access.

● Special instruction for creating a promise that
just reads a variable
– Faster variable access for builtins (uses cache)

● Constant-pool re-ordering
– Variable are first, which reduces memory overhead

of the binding cache and improves locality

Frames in R are implemented using linked lists.
A binding cache stores, for each constant in the constant pool,
a reference to the corresponding element of the linked list.

Stack-allocation of call arguments.
(primarily in the compiler)

● Call arguments passed as linked-list
● Special stack-based memory region

– Growable, shrinkable stack for fixed-size call
argument cells

– Special treatment by the GC

● Support for long-jumps via contexts
● Better locality, faster reclamation

In R, the list of function arguments (promises) passed to a function are kept
around for the duration of the function call, because they'll become needed
in the case of object dispatch.

Explicit argument passing (no linked lists).

● For (many) builtins and internals
● For closures called positionally

– Lists are only created lazily if needed

get(x, envir, mode, inherits)

SEXP attribute_hidden do_get(SEXP call, SEXP op, SEXP args, SEXP rho)

 if (!isValidStringF(CAR(args)))
 if (TYPEOF(CADR(args)) == REALSXP)
 if (isString(CADDR(args)))
 ginherits = asLogical(CADDDR(args));

do_earg_get(SEXP call, SEXP op,
 SEXP arg_x, SEXP arg_envir, SEXP arg_mode, SEXP arg_inherits, SEXP rho)

Inlining wrappers to foreign calls.

rnorm <- function (n, mean = 0, sd = 1)
 .External(C_rnorm, n, mean, sd)

● Inlining avoids overhead of promise creation,
argument matching, environment creation

● Explicit passing of arguments to .Call foreign
calls (avoiding linked list)

● Updating external pointer at load time

C_rnorm in the example is a variable in the `stats` namespace, which is
automatically created when `stats` package is loaded and it points to
a registered native symbol (R object). This object contains an external
pointer (R structure), which contains a physical pointer to the `rnorm`
routine implemented in the C code of the `stats` package.

Object dispatch (S3/S4) optimizations.

● Faster signature creation
– Avoid name allocation

– Re-use hashcode of first term “method”

– Comparison using == (instead of strcmp)

● Fast-path optimizations

During method dispatch, one needs an R symbol for a signature (S3 or S4).
A symbol has to be looked up in a hash table, based on its string name.
Strings in R are however also interned (STRSXPs), and remember their
hashes.

method.class
method#class1#class2#class3

Summary

● GNU-R performance for real applications can be
improved without changing current semantics
– Avoiding linked lists for function arguments

– Optimizing dispatch of stats functions, S3/S4 dispatch

– Optimizing string operations

– Smaller clean-ups (symbol, charsxp shortcuts, etc)

● I'm working with Luke Tierney on merging some
of these improvements

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

