
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Automatic Non-uniform Random Variate

Generation in R

Günter Tirler Josef Leydold

Abstract

Random variate generation is an important tool in statistical comput-
ing. Many programs for simulation or statistical computing (e.g. R) provide
a collection of random variate generators for many standard distributions.
However, as statistical modeling has become more sophisticated there is de-
mand for larger classes of distributions. Adding generators for newly required
distributions seems not to be the solution to this problem. Instead so called
automatic (or black-box) methods have been developed in the last decade
for sampling from fairly large classes of distributions with a single piece of
code. For such algorithms data about the distributions must be given; typ-
ically the density function (or probability mass function), and (maybe) the
(approximate) location of the mode. In this contribution we show how such
algorithms work and suggest an interface for R as an example of a statistical
library.

1 Introduction

Random variate generation is an important tool in statistical computing. Many
programs for simulation or statistical computing (e.g. R) provide a collection of
random variate generators for many standard distributions. There exists a vast
literature on generation methods for standard distributions; see, for example, the
books by Devroye (1986), Dagpunar (1988), Gentle (1998), or Knuth (1998). These
books are usually the source for algorithms implemented in software. These algo-
rithms are often especially designed for a particular distribution and tailored to the
features of each probability density function. The designing goals for these methods
are fast generators and/or simple code.

New URL: http://www.R-project.org/conferences/DSC-2003/ 

http://www.R-project.org/conferences/DSC-2003/


Proceedings of DSC 2003 2

In the last decade so called automatic (also called universal or black-box) meth-
ods have been developed for sampling from fairly large classes of distributions with
a single piece of code. For such algorithms data about the distribution must be
given; typically the density function (or probability mass function), and (maybe)
the (approximate) location of the mode. Obviously these universal methods need
some setup step, in opposition to special generators, e.g., to the Box-Muller method
(Box and Muller, 1958). Nevertheless, we always can select between a fast setup
step and slow marginal generation times or (very) fast marginal generation times at
the expense of a time consuming setup step. Some of the algorithms can be adjusted
by a single parameter to the needs of the current situation. Although originally mo-
tivated to generate from non-standard distributions these universal methods have
advantages which makes their usage attractive even for sampling from standard
distributions. For univariate continuous distributions there are methods like Trans-
formed Density Rejection (Hörmann, 1995), or algorithms based on a variant of the
ratio-of-uniforms method (Leydold, 2000), or on piecewise constant hat functions
(Ahrens, 1995). They have the following properties in common (see Leydold and
Hörmann, 2001, for details):

• Only one piece of code, well implemented and debugged only once, is required.

• By a simple parameter it is possible to choose between fast setup with slow
marginal generation time and vice versa.

• It can sample from truncated distributions.

• The algorithms can be made as close to inversion as requested.

• The marginal generation time does not depend on the density function and is
faster than many of the specialized generators (even for the normal distribu-
tion).

• It can be used for variance reduction techniques.

• The quality of the generated random variates only depends on the underlying
uniform random number generator.

For more details on these and many other universal methods see the forthcoming
monograph by Hörmann, Leydold, and Derflinger (2003).

2 UNU.RAN

Universal methods are usually harder to implement than specialized algorithms,
since there is a setup where the necessary constants for the generation steps have
to be precomputed. Moreover, it might be necessary to check whether a particular
method works with the given distribution. Thus we have implemented many of these
automatic algorithms using ANSI C in a library called UNU.RAN (Universal Non-
Uniform RANdom variate generators). Our main goal was to realize a portable,
flexible and robust program, see Leydold, Hörmann, Janka, and Tirler (2002). It is



Proceedings of DSC 2003 3

implemented using an object oriented programming paradigm. Using this library
an instance of a generator object has to be created first. That object can be used
to sample from the given distribution. Thus it is easy to exchange distributions in
simulations. Moreover, each generator object may have its own uniform pseudo-
random number generator or share one with other generator objects.

We have developed two application programming interfaces: a “traditional”
API where the generator object is created via a new call and where replacement
functions are used to exchange default parameters with user defined ones. The
second interface uses a string which describes both the desired distribution and the
chosen generation method.

3 An R interface

We propose an R interface for this library, called Runuran. This extends the usual
functionality for random variate generation in R in several ways. First it is easy to
sample from non-standard distributions. Secondly it is possible to choose different
methods to achieve a particular distribution, which is not possible in R except for
the normal distribution.

The object oriented approach of UNU.RAN is reproduced using S4 classes (Cham-
bers, 2000). This provides nearly all features of UNU.RAN and is very simple to use.
In the following chapter we will describe the main ideas of our implementation and
give examples how to use UNU.RAN in R.

As we can see in the following example it is very easy to create non-uniform
random variates for complicated distributions, e.g. the hyperbolic distribution:

> hyp = new("unur","cont;pdf=\"1/sqrt(1+x^2)*exp(-2*sqrt(1+x^2)+x)\"")
> x<-sample.unur(hyp,10000)
> hist(x,breaks=50)

Besides this default string interface of UNU.RAN there is also a second interface
available with several strings. The first one describes the distribution, the second
one the method and the third one the parameters of the method.

> gen = new("unur",distr="normal();domain=(0,inf)",
method="arou", methodpars="max_sqhratio=0.9")

> x<-sample.unur(gen,10000)
> hist(x,breaks=50)

The default settings are used whenever keywords are omitted. The default
method depends on the distribution and is documented in Leydold et al. (2002).
We define in R a special S4-class named unur with two slots.

> setClass("unur",representation(string="character",p="externalptr"),
prototype = list(string=character(), p="externalptr"))

In the slot string we include all necessary information about the distribution,
used method etc. to create our ’generator object’ in UNU.RAN. A full description



Proceedings of DSC 2003 4

can be found in Leydold et al. (2002). The second slot contains an external pointer
which refers to a generator object created by the C code.

We have defined a function initialize for our class unur. This ensures that
after the creation of a new instance of the class unur, a pointer to the generation
object is created and handled by the C code of UNU.RAN.

> setMethod("initialize","unur",
function(.Object,x=character())
{ ...
.Object@p <-.Call("R_unur_init",x)
.Object

}
)

The setup step of the black-box algorithms is hidden behind this initialization.
If it fails the user is informed by an error message. This can happen, for example,
if the chosen method does not work for a given distribution.

The user does not need to know anything about the created generator object
except that it contains all information to create the random variates very fast and
efficiently. Of course UNU.RAN allocates memory which should be deallocated in R.
R provides an ideal function named R RegisterCFinalizer which ensures that the
memory will be deallocated by the garbage collector.

Our first version uses only the same built-in uniform RNG for all generators
although UNU.RAN can use multiple streams of uniform random number generators.
With the functions

> seed.unur(1234)
> reset.unur()

we can set and reset the seed.

The following examples should show some interesting features of our interface.
We can use different algorithms for a large class of distributions

> gen = new("unur",distr="beta()",method="tdr")
> x<-sample.unur(gen,10000)

or we can sample from truncated functions

> gen = new("unur",distr="normal();domain=(-1,1)")
> x<-sample.unur(gen,10000)

or we can sample from a kernel density estimate with kernel smoothing

> gen = new("unur",distr="cemp;data=(-0.1,0.05,....)",
method="empk", methodpars="smothing=0.8")

> x<-sample.unur(gen,10000) .



Proceedings of DSC 2003 5

4 Conclusion

Our interface provides the possibility to use a lot of algorithms in R to generate
non-uniform variates for large classes of distributions. Due to the implementation
of S4-classes the handling is very easy. An R package with automatic installation
and documentation is in preparation. A closer relationship between R and UNU.RAN
should be possible and easy to realize. For example, to define a distribution function
in R and use algorithms of UNU.RAN to generate random numbers. But this makes
only sense if we first define a distribution object in R. This is already in planning by
a group in Bayreuth (Ruckdeschel and Kohl, 2003). A lot of contributed packages of
R use random variates of special distributions but each of these implements its own
generator. Therefore we think that a standard description of distribution objects
including generation of random variates will be helpful for a lot of code developers
in R.

References

J. H. Ahrens. A one-table method for sampling from continuous and discrete dis-
tributions. Computing, 54(2):127–146, 1995.

G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.
Annals of Math. Stat., 29(2):610–611, 1958.

J. M. Chambers. Programming with Data. Springer, 2000.

J. Dagpunar. Principles of Random Variate Generation. Clarendon Oxford Science
Publications, Oxford, U.K., 1988.

L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New-York,
1986.

J. E. Gentle. Random Number Generation and Monte Carlo Methods. Statistics
and Computing. Springer, New York, 1998.

W. Hörmann. A rejection technique for sampling from T-concave distributions.
ACM Trans. Math. Software, 21(2):182–193, 1995.

W. Hörmann, J. Leydold, and G. Derflinger. Automatic Non-Uniform Random
Variate Generation. Springer-Verlag, Berlin Heidelberg, 2003. in press.

D. E. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical Algo-
rithms. Addison-Wesley, 3rd edition, 1998.

J. Leydold. Automatic sampling with the ratio-of-uniforms method. ACM Trans.
Math. Software, 26(1):78–98, 2000.

J. Leydold and W. Hörmann. Universal algorithms as an alternative for generating
non-uniform continuous random variates. In G. I. Schuëller and P. D. Spanos, ed-
itors, Monte Carlo Simulation, pages 177–183. A. A. Balkema, 2001. Proceedings
of the International Conference on Monte Carlo Simulation 2000.



Proceedings of DSC 2003 6

J. Leydold, W. Hörmann, E. Janka, and G. Tirler. UNU.RAN – A
Library for Non-Uniform Universal Random Variate Generation. Insti-
tut für Statistik, WU Wien, A-1090 Wien, Austria, 2002. available at
http://statistik.wu-wien.ac.at/unuran/.

R. Ruckdeschel and M. Kohl, 2003. private communications.

Corresponding author

Günter Tirler
Institut für Statistik
Wirtschaftsuniversität Wien
Augasse 2–6
A–1090 Vienna
Austria, EU
Tel: +43 1 313 36 - 4840
Fax: +43 1 313 36 - 738
E-mail: tirler@statistik.wu-wien.ac.at

mailto:tirler@statistik.wu-wien.ac.at

	Introduction
	UNU.RAN
	An R interface
	Conclusion

