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Abstract

Novel high-throughput technologies such as DNA microarray analyses are
allowing biologists to generate sets of data in the terabyte realm. Many of
these data will be deposited in the public domain, necessitating a common
standard. Currently available database systems are not appropriate for these
intentions.

In this paper, I will introduce ROOT (http://root.cern.ch), an object-
oriented framework that has been developed at CERN for distributed data
warehousing and data mining of particle data in the petabyte range. Data are
stored as sets of objects in machine-independent files, and specialized methods
are used to get direct access to separate attributes of selected data objects.
ROOT has been designed in such a way that it can query its databases in
parallel on SMP/MPP machines, on clusters of PC’s, or using common GRID
services.

In order to demonstrate the applicability of ROOT to microarray data,
I will present a functional prototype system, called XPS - eXpression Profil-
ing System, which can be considered to be an alternative to the Bioconduc-
tor project. The current implementation handles the storage of Affymetrix
GeneChip schemes and data, and the pre-processing, normalization and filter-
ing of GeneChip data. Based on this system, I will propose a novel standard
for the distributed storage of microarray data.

Finally, I will emphasize the similarities between R and ROOT, and show

how R could be easily extended to access ROOT from within R.

New URL: http://www.R-project.org/conferences/DSC-2003/ 

http://root.cern.ch
http://www.R-project.org/conferences/DSC-2003/


Proceedings of DSC 2003 2

1 Introduction

DNA microarray technology allows scientists to monitor the expression of genes on
a genomic scale with the promise to provide key insights into gene function and
gene regulatory networks. However, management and analysis of the huge amounts
of data produced by microarray experiments have become a major bottleneck. Cur-
rently, public data are available as flat files or from public database repositories,
where they are not easily accessible for statistical analysis. Furthermore, these
databases are implemented as relational database management systems (RDBMS),
which suffer from a number of limitations when dealing with data in the terabyte
range. The major disadvantage is that data are restricted to tables and simple
attributes. The semantics of the data are split between the relations and thus
maintaining the integrity of the schema is difficult. As the size of the database in-
creases the performance of the system suffers. In contrast, object-oriented database
(OODB) systems handle objects rather than data, providing features such as object
identification, data abstraction, class structure, encapsulation, inheritance, poly-
morphism and extensibility (Rolland, 1998). The performance capabilities of OODB
systems are considerably higher than RDBMS for scaling to the terabyte regime.

The size and complexity of microarray data, and the need of utilizing biological
meta-data proposes the presentation of these data in an object model and the
storage of the data as persistent objects in an OODB system. However, microarray
data deposited in the public domain, demand decentralized access to these data
in a standardized manner. Since the corresponding datasets have usually already
been cleaned and validated, an obvious choice is their storage in a distributed data
warehouse. Powerful data mining techniques can then be applied to discover hidden
patterns and to extract knowledge from microarray data (Han and Kamber, 2001).

Considering the ever-increasing amount of microarray data and meta-data, the
growing demand for access to large-scale national and international facilities, and
the increasing computing requirements for large-scale data mining and analysis, it
is proposed that an international standard for storage of microarray data and the
corresponding meta-data should be based on ROOT.

2 Why ROOT?

Currently, the European Laboratory for Particle Physics, CERN, is building a new
particle accelerator, the Large Hadron Collider (LHC), which is scheduled to com-
mence operation in 2007. Four detectors are built for different experiments, each of
which will accumulate 1-8 Petabyte of data per year, giving rise to a total volume
of more than 250 PB over the expected twenty-year lifetime of the project. This
volume of data exceeds by many orders of magnitude what is traditionally termed
a very large database. Today, 1 TB is considered large - one of the experiments at
LHC will be storing 1 TB every 10 minutes (Shiers, 1998)!

Since the demands of LHC are far beyond the capabilities of any commercial
database system, Rene Brun has started in November 1994 to develop ROOT as an
object-oriented framework for large-scale scientific data analysis and data mining



Proceedings of DSC 2003 3

(Brun and Rademakers, 1997). Today, ROOT has not only become the de facto
standard tool for data storage and analysis in Particle Physics, but is also used
in other sciences as well as the financial and medical industries. As an example,
MammoGrid, an EU-funded project for remote image analysis and interactive online
diagnosis of mammograms, will be based on ROOT.

ROOT is a modular object-oriented framework aimed at solving the data anal-
ysis challenges of high-energy physics (HEP). The main features of ROOT are as
follows (Brun et al., 2002):

• Architecture: The ROOT architecture is a layered class hierarchy with over
500 classes divided into different categories (Figure 1). Most of the classes in-
herit from a common base class TObject, which provides the default behavior
and protocol for all objects.
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Figure 1: The ROOT classes are organized in different libraries. The diagram shows
the library dependencies. Courtesy of Rene Brun.

• Object Input/Output Facility : Object input/output is handled by class TFile,
which has a UNIX-like directory structure and provides a hierarchical sequen-
tial and direct access persistent object store. ROOT files store information in
a machine independent format and support on-the-fly data compression. Fur-
thermore, ROOT files are self-describing: for every object stored in TFile, a
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dictionary describing the corresponding class is written to the file. A dictio-
nary generator, called ROOTCINT, parses the class header files and generates
a dictionary.

• Data Trees: Any object derived from TObject can be written to a file with
an associated key TKey. However, each key has an overhead in the directory
structure in memory. To reduce this overhead, a novel concept, called Trees
(class TTree) has been developed. Trees are designed to support very large
numbers of complex objects in a large number of files. A Tree consists of
branches (TBranch) with each branch described by its leaves (TLeaf). Trees
allow direct and random access to any entry of a selected subset of branches.
Thus, Trees extend and replace the usual data tables. The concept of Tree
friends allows the joining of many trees as one virtual tree. However, unlike
table joins in an RDBMS, the processing time is independent of the number
of tree friends.

• Folder concept : One of the major critiques of OODB systems is the problem
of database queries. Since connections between objects are usually established
via chains of pointers, a querying method has to loop along pointer chains to
find the object containing the requested data (Rolland, 1998). To circumvent
these limitations, ROOT provides the Folder concept (TFolder). A producer
class places a pointer to its data into a folder, and the consumer class retrieves
a reference to the folder. Thus, the use of folders reduces class dependencies
and improves modularity.

• Statistical analysis: The current implementation of ROOT supports the sta-
tistical analysis of HEP-specific data. Histogram and minimization classes
offer statistical data analysis features, like 1D, 2D and 3D histograming, pro-
file histograms, data fitting, formula evaluation and minimization. Fitting
in ROOT is based on the well-known minimization package MINUIT (class
TMinuit), which is able to fit data using pre-defined or user-defined functions.

• ROOTD : Remote database access supports the construction of distributed
data warehouses: The multithreaded rootd daemon manages LAN and WAN
data access (TNetFile), while the addition of a ROOT specific module to the
Apache web server allows the distribution of ROOT files to any ROOT user
(TWebFile).

• PROOF : GRID computing is supported by the Parallel ROOT Facility PROOF,
which implements the master/slave concept. However, the slave servers are
the active components that ask the master server for new work whenever they
are ready. The PROOF GRID interface (TGrid) allows the use of a Grid
resource broker, Grid file catalogue and replication manager, and the Grid
monitoring services.

• CINT : CINT is an interactive C/C++ interpreter, which is aimed at pro-
cessing C/C++ scripts, called macros (Goto, 1996). Currently, CINT covers
99% of ANSI C and 95% of ANSI C++. CINT offers a gdb-like debugger for
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interpreted programs and allows the automatic compilation of scripts using
ACLiC, the automatic compiler of libraries for CINT. Although available as
independent program, CINT is embedded in ROOT as command line inter-
preter and macro processor, as well as dictionary generator.

• User interaction: The ROOT system can be accessed from the command
line, by writing macros, or via a graphic user interface (e.g. ObjectBrowser,
TreeViewer). Furthermore, it is possible to write libraries and applications.
The ROOT GUI classes allow the development of full-featured standalone
applications.

• Platform independence: The ROOT system is available for most platforms
and operating systems, including Linux, MacOS X, and the major flavors of
UNIX and Windows. ROOT and ROOT-derived applications can be compiled
for any supported platform on 10 different compilers.

• SQL interface: ODBC access to SQL compliant systems such as Oracle is
implemented. Since ROOT is currently not a full featured database, a com-
posite approach has been adopted as ROOT database model: Write-once data
are put in ROOT files as object store, and an RDBMS is used to store the
corresponding Run/File catalog.

Other features of ROOT include its own collection classes, physics vector classes, a
matrix package, a geometry package, support for 2D and 3D graphics, networking
classes to build client/server applications, and documentation classes for automatic
document generation.

3 XPS - eXpression Profiling System

After reviewing different technologies for large-scale expression profiling (Stratowa
and Wilgenbus, 1999), two topics were obvious for me: i) DNA-chips will become
the standard technology for expression profiling, and ii) management and analysis of
the huge amounts of data produced by DNA-chips will become a major bottleneck.
Being aware of the immense amounts of data generated by particle detectors, and
the challenges of the LHC project on data handling and analysis, I came across
ROOT, which is aimed at solving these problems. In December 1999 I started to
build a first prototype system to test the feasibility of using ROOT as framework for
the storage of microarray data. After the successful implementation of a prototype,
I started to develop XPS as system for large-scale microarray data storage and
analysis. In the following I will describe the current status of XPS, which can be
considered to be an alternative to the Bioconductor project (Gentleman and Carey,
2002) for large-scale data mining of expression profiling experiments.

The aim of XPS is to provide a complete software environment for data ware-
housing and data mining of microarray data in the terabyte range. Features of XPS
will include: distributed data warehousing, local and remote data access, interac-
tive and remote data analysis, tools for statistical analysis, ability to write simple
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or complex macros, an intuitive graphical user interface, support for multiple mi-
croarray technologies, platform independency.

The current implementation of XPS handles the storage of Affymetrix GeneChip
schemes and data, and the pre-processing, normalization and filtering of GeneChip
data. The general concept of XPS is outlined in Figure 2.

eXpression Profiling System: Copyright (c) 2000-2003 C. Stratowa
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Figure 2: Concept and workflow for storage and analysis of microarray data.

All data are stored in portable ROOT files. Data describing the physical mi-
croarray layout, the probe information and the metadata for genes are stored as
ROOT Trees in the Scheme File. Only this file needs to be updated regularly
to include new and updated gene annotation data. Any microarray project con-
sists of at least one dataset. The tabular raw data for every dataset are stored as
ROOT Trees in a Data File. The collection of all data files can be considered to be
the data warehouse. The necessary ”File Catalog” could be easily implemented as
an RDBMS, which would also contain the MIAME-compliant dataset information
(Brazma et al., 2001). In this way, microarray data deposited in the public domain
as data files will assemble a distributed global data warehouse, which will store
unlimited amounts of data in a compressed, machine independent format. Every
laboratory/user can access these data, apply the preferred pre-processing algorithms
(e.g. for background correction, condensation), and store the processed data in a
local database as Trees in Preprocess Files. Data Trees to be analyzed together will
be normalized using an algorithm of choice, and can be stored as groups in Normed
Files. Normalized data Trees can then be subjected to gene filtering and further
analysis.
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XPS is built as a modular system with the different modules reflecting the
workflow of a typical microarray experiment. This is outlined in Figure 3.

eXpression Profiling System: Copyright (c) 2000-2003 C. Stratowa
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Figure 3: The modular structure of XPS reflects the workflow of a typical microarray
experiment. (Items highlighted in gray indicate the current implementation status.)

XDataManager is responsible to store the microarray measurements for every
sample, i.e. the results of the chip hybridizations, as Trees in data files, while
XSchemeManager is used to store and update chip layout, probe information and
gene annotation. XPreprocessManager handles quality control, background cor-
rection and data condensation. Selection of non-variant genes, normalization of
the selected gene set, and application of the normalization function to all genes
is the task of the XNormationManager. Finally, gene filtering and data mining is
the responsibility of XAnalysisManager. All Manager classes inherit their common
behavior from the base class XManager. This is shown in Figure 4 which outlines
the most important classes and their dependencies.

Class XPlot provides methods to draw various graphs, and for diagnostic plots
such as histograms, boxplots, scatterplots and spatial color images. XSetting is a
helper class responsible for the parameter settings. Class XTreeSet and its derived
classes (Figure 5) are the essential classes of XPS: XDNAChip imports chip layout,
probe information and gene annotation and stores the data in a set of ROOT Trees,
called scheme tree, unit tree, probe tree and annotation tree, respectively, for every
microarray scheme.
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Figure 4: Overview of the main XPS classes and modules. Libraries (gray regions)
and their dependencies are displayed.
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Figure 5: Inheritance diagrams for classes XAlgorithm and XTreeSet.
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XHybridization is used to import the hybridization data: Subclass XGeneChipHyb
imports GeneChip *.CEL files. In this case, the treeset consists of data tree and
mask tree, respectively. (In contrast, XGeneChipMetrics and XGeneChipPivot
can be used to import data already processed by the Affymetrix Microarray Suite
(Affymetrix, 2001).) XPreProcesSet transforms the raw data into the final microar-
ray data by employing the appropriate algorithms. The resultant treeset, namely
background tree, expression tree and call tree, is obtained by applying the respective
subclass of class XHybAlgorithm (see Figure 5). Normalization of the data is done
by class XNormedSet, which employs i) a descendent of XSelector to select non-
differentially expressed genes, and ii) XNormalizer to subject the selected subset of
genes to a normalization method of choice. The resultant normalization parameters
are then applied to all data; the corresponding treeset consists of expression tree and
mask tree, respectively. The final step, gene filtering and data analysis, is the task
of class XAnalySet, which calls the appropriate algorithms. Currently, t-test and
resampling-based multiple testing methods, as described in Dudoit, Yang, Callow,
and Speed (2000), are implemented in class TUnivariateTest.

void ImportSchemes()

{

// create new scheme manager
XSchemeManager *manager = new XSchemeManager("MyManager");

// create new root schemes file
manager->New("GeneChipCDFs","","GeneChip");

// store chip definitions , probe sequences and annotations
// Hu6800:

manager->NewScheme("Hu6800","/cdf/Hu6800.CDF");

manager->InitQC("Hu6800", 6, 7130,7129,7133,7134,7132,7131);

manager->NewProbeInfo("Hu6800","/cdf/HuGeneFL_probe.tab");

manager->NewAnnotation("Hu6800","/cdf/Hu6800_annot.txt");

// HG U95Av2:
manager->NewScheme("HG_U95Av2","/cdf/HG_U95Av2.CDF");

manager->InitQC("HG_U95Av2",6,12629,12630,12626,12625,12627,12628);

manager->NewProbeInfo("HG_U95Av2","/cdf/HG-U95Av2_probe.tab");

manager->NewAnnotation("HG_U95Av2","/cdf/HG_U95Av2_annot.txt");

// cleanup
delete manager;

}//ImportSchemes

Script 1: Import Affymetrix chip definition, probe information and gene annotation.

XPS is designed as a collection of libraries (Figure 4) extending the set of ROOT
libraries. This setup allows interactive usage of XPS from within the ROOT runtime
environment, by means of a series of basic commands or by writing simple macros.
In addition, these libraries can be wrapped in a graphic user interface for compilation
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as a standalone program. In the following paragraphs I will demonstrate how each
phase of a typical microarray experiment (Figure 3) can be implemented as a simple
macro/script:

Scheme Import: The current implementation of XPS supports the storage of
all relevant information for Affymetrix GeneChips in a scheme file. As a first step,
the chip definition file (e.g. Hu6800.CDF) is imported and stored in an efficient
way as scheme tree and unit tree, respectively. After this step, the CDF-file is no
longer needed. (A typical user of XPS will never get in touch with CDF files.)
Optionally, the corresponding probe information file (e.g. HuGeneFL probe.tab)
can be downloaded from the Affymetrix NetAffx web-site, and stored as probe tree.
Finally, gene annotation data can be stored as annotation tree. Currently, the
necessary information has to be supplied as tab-separated text file. Script 1 gives
an example how to import the relevant information for GeneChips Hu6800 and
HG U95Av2.

void ImportHybridizations()

{

// create new data manager
XDataManager *manager = new XDataManager("MyManager");

// initialize chip type and variable list
manager->Initialize("GeneChip");

manager->InitInput("Hu6800","cel","MEAN/D:STDV/D:NPIXELS/I","RawData");

// create new root data file
manager->New("MyHybridizations","~/mypath/test","GeneChip");

// open root scheme file
manager->OpenSchemes("~/path/GeneChipCDFs.root");

// store ∗.CEL data as tree in data file
manager->Import("Hyb1","/mypath/data/chip1.CEL");

manager->Import("Hyb2","/mypath/data/chip2.CEL");

// store ∗.CEL files exported from MAS5 as ∗.XML files
manager->Import("Hyb3","/mypath/mage_data/chip3.XML");

manager->Import("Hyb4","/mypath/mage_data/chip4.XML");

// cleanup
delete manager;

}//ImportHybridizations

Script 2: Import GeneChip oligonucleotide-array data.

Note that every script/macro consists of a series of simple member function
calls to the appropriate manager class: First, the user creates the corresponding
manager object. If required, initialization, i.e. the settings of various parameters
is done next. A new ROOT file is created, and existent data files are opened. The
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actual task is managed as a series of method calls. Finally, the manager object is
deleted.

Data Import: Usually, the raw GeneChip data files will be imported and stored
as data trees. XPS is able to import the current format *.CEL as well as data
exported from MAS5 as *.XML files. Alternatively, it is possible to import the
preprocessed metrics files or pivot tables. Script 2 shows how to import CEL files.

Quality Control: Several plotting functions are useful for diagnosing problems
with the data. Plotting the image can be used to detect spatial artifacts, while a
histogram displays the intensity distribution. Figure 6 provides clear evidence of
saturation effects.

eXpression Profiling System: Copyright (c) 2000-2003 C. Stratowa

Figure 6: Zoomed image of log intensities and a histogram revealing intensity sat-
uration.

The PM and MM intensities for every single Affymetrix probe set can be dis-
played as graph, either in the default order, or sorted according to different criteria.
Figure 7 offers a hint, that the GC-content of the oligonucleotides presenting a
probe pair set may affect the hybridization of the target RNA to each probe.

Preprocessing: The term preprocessing summarizes a series of operations nec-
essary to obtain the final expression measures, such as data cleaning, background
correction, and, in the case of Affymetrix GeneChips, condensation of probe set val-
ues into one expression measure and detection call to indicate whether a transcript
is detected. The current background algorithm divides the microarrays into
(n x m) sectors, and allows local smoothing. Currently implemented algorithms for
calculating an expression measure include arithmetic/geometric trimmed mean of
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Figure 7: The intensities of the PM (black) and MM (blue) oligonucleotides for
probe set 1016 s at are shown (left) in the default order and (right) sorted according
to decreasing GC-content of the probes.

eXpression Profiling System: Copyright (c) 2000-2003 C. Stratowa

Figure 8: 2D-histogram comparing two arrays, drawn with option COLor (left) or
SURFace (right).



Proceedings of DSC 2003 13

PM only, weighted mean of PM or weighted mean of PM-MM, and the AvgDiff
algorithm of MAS4, respectively. Script 3 converts probe level data to expression
values using the arithmetic trimmed mean algorithm.

void PreprocessData()

{

// create new preprocessing manager
XPreProcessManager *manager = new XPreProcessManager("MyManager");

manager->Initialize("GeneChip");

// initialize preprocessing algorithms , e.g . arithmetic trimmed mean
manager->InitExpression("amn", 1, 0.15);

// create new root expression data file
manager->New("MySamples_amn","~/mypath/test","GeneChip");

// open root scheme file
manager->OpenSchemes("~/GeneChipCDFs.root");

// open root raw data file for reading only
manager->OpenData("~/mypath/test/MyHybridizations.root");

// calculate trimmed mean values and store as trees in new file
manager->Calculate("Hyb1.cel", "Sample1");

manager->Calculate("Hyb2.cel", "Sample2");

manager->Calculate("Hyb3.cel", "Sample3");

manager->Calculate("Hyb4.cel", "Sample4");

// cleanup
delete manager;

}//PreprocessData

Script 3: Calculate expression values from raw data.

Visual examination using scatterplots, MvA-plots and boxplots is helpful to
determine whether there is a need for normalization and to select an appropriate
algorithm; an example is shown in Figure 8.

Normalization: The comparison of gene expression results across multiple exper-
iments relies crucially on effective normalization algorithms. While initial methods
for normalization assumed a linear relationship between experiments, Dudoit et al.
(2000) were the first to point out the need for non-linear normalization methods.
Preferably, these algorithms should be applied only to genes considered to be in-
variant in the respective experiments. XPS allows the user to select these genes, or
supplies a rank-based algorithm. Currently implemented algorithms for normaliza-
tion include trimmed mean, median, ksmooth, lowess and supsmu (see Figure 5).
The implemented algorithms for gene selection and normalization are described in
Stratowa and Abseher (2001). Script 4 reveals how to initialize theses algorithms,
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select the expression data, normalize the data and store the normalized expression
values in a new ROOT file.

void Normalize()

{

// create new normalization manager
XNormationManager *manager = new XNormationManager("MyManager");

// create new normalized expression file
manager->New("MySamples_sup","~/mypath/test","GeneChip");

manager->Initialize("GeneChip");

// initialize algorithm used to select genes for normalization
manager->InitSelector("rank", "separate", 4,0,0.3,400,0);

// initialize normalization algorithm
manager->InitNormalizer("supsmu", "", "log10", 2,0.0,0.0);

// open root scheme file
manager->OpenSchemes("~/GeneChipCDFs.root");

// open root expression data file
manager->OpenData("~/mypath/test/MySamples_amn.root");

// select trees for normalization
manager->Select("SampleSet","Sample1.amn",1,"reference");

manager->Select("SampleSet","Sample2.amn");

manager->Select("SampleSet","Sample3.amn");

manager->Select("SampleSet","Sample4.amn");

// normalize data
manager->Normalize("SampleSet");

// cleanup
delete manager;

}//Normalize

Script 4: Normalize expression values.

Filtering: Currently, methods to filter differentially expressed genes are based on
univariate tests for each gene and correction for multiple hypothesis testing using
adjusted p-values, as described in Dudoit et al. (2000) . The following resampling-
based multiple testing procedures are implemented for controlling the family-wise
error rate: Bonferroni, Hochberg, Holm, Westfall and Young step-down adjustment.
In addition, the FDR method of Benjamini and Hochberg to control the false discov-
ery rate is available. These procedures are currently implemented for tests based on
z-statistics, t-statistics and paired t-statistics. The results of these procedures are
summarized using adjusted p-values (p-adjust), which may be computed from the
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nominal distribution of the test statistic (p-value) or by permutation (p-chance).
Script 5 shows how to initialize multiple testing, select and group samples for fil-
tering, and export the results of the analysis as tab-separated text-file.

void FilterData()

{

// create new analysis manager
XAnalysisManager *manager = new XAnalysisManager("MyManager");

// create new root analysis file
manager->New("WY_Test","~/mypath/test","UnivariateAnalysis");

// init default settings : type should be type of analysis
manager->Initialize("UnivariateAnalysis");

// init analysis : twosided t−test and Westfall & Young step−down adjustment
manager->InitAnalysis("ttest", "twosided", "wy", 5, 10000, 0, 0, 0.95, 1);

// open root scheme file
manager->OpenSchemes("~/GeneChipCDFs.root");

// open normalized data file
manager->OpenData("~/mypath/test/MySamples_sup.root");

// add trees to treeset ”SetTTest” and set group affiliation
manager->AddTree("SetTTest","Sample1.sup", 1, "Group1");

manager->AddTree("SetTTest","Sample2.sup", 1, "Group1");

manager->AddTree("SetTTest","Sample3.sup", 2, "Group2");

manager->AddTree("SetTTest","Sample4.sup", 2, "Group2");

// do t−test and Westfall & Young step−down adjustment
manager->Analyse("SetTTest", "fLevel", "TreeTTest");

// export results
manager->Export("SetTTest.*.stt", "stat:pval", "SampleTest_wy.txt");

// cleanup
delete manager;

}//FilterData

Script 5: Filter genes using Westfall and Young step-down adjusted p-values.

To demonstrate the feasibility of this approach, data from the prostate cancer
experiment of Singh et al. (2002) were used as case study. Starting from the public
available CEL-files, raw data were converted to expression measures, subjected to
normalization, and differentially expressed genes identified by multiple testing. The
results of the analysis, using a subset of samples only, is shown in Figure 9.

Data Mining: Although currently not implemented, both unsupervised and su-
pervised learning methods will be made available within XPS.
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UNIT_ID Statistics Mean_N Mean_T P-Value P-Chance
11674 9.53 36.03 26.52 0.00008 0.02857
3462 8.43 106.32 91.35 0.00015 0.02857
6940 -6.85 49.45 102.75 0.00048 0.02857
9799 6.77 182.78 155.93 0.00051 0.02857
9353 -6.58 29.57 290.29 0.00059 0.01429
5790 6.22 98.83 72.94 0.00080 0.02857
2868 6.13 203.92 168.75 0.00087 0.02857

12619 5.75 59.28 40.30 0.00121 0.02857
11378 5.42 26.13 19.53 0.00163 0.02857
2199 -5.34 172.11 215.59 0.00176 0.02857

11878 5.27 125.99 85.21 0.00188 0.02857
6192 5.25 106.67 87.23 0.00192 0.02857
8457 5.13 140.44 112.82 0.00215 0.02857

11853 -5.00 42.42 82.48 0.00245 0.02857

    4 Normal         4 Tumor     

Figure 9: Genes differentially expressed in prostate cancer. Expression values of
genes highlighted in yellow are plotted.

4 A novel standard for microarray data storage

It has often been mentioned that the adoption of common standards for the man-
agement and sharing of microarray data is essential. Stoeckert, Causton, and Ball
(2002) state that ”if data from every microarray research project were stored in the
same type of database with exactly the same structure, transferring data from one
database to another would be a relatively straightforward proposition”.

Here I propose a novel standard for the storage of microarray data, which will
not only allow easy exchange of data, but also the distributed storage of microarray
and oligonucleotide-array data. It is proposed to adopt ROOT files (TFile) as
common file format for data storage, and ROOT trees (TTree) as storage format
for the results of chip hybridizations as well as chip layout, probe information and
gene annotation. Endorsing ROOT files and trees as common standards has many
advantages, already described earlier, such as a machine-independent file format,
built-in data compression, LAN and WAN network access as well as GRID access.
Data could be accessed in a number of ways: It is possible to access ROOT trees
directly from within any C++ or Java (Johnson) program. APIs are currently
being developed for Java (JavaRoot) and Python (RootPython). Furthermore, an
interface exists already to access ROOT data from within Mathematica, namely
MathROOT (Langston). In an analogous way, R could be extended (see below).
Alternatively, it is easy to export selected data from ROOT trees as text-files.

As an example, how microarray data could be stored as ROOT trees in a stan-
dardized manner, a ROOT script is attached as supplementary information, which
implements the proposed standard for Affymetrix GeneChip CEL-files. Note, that
the size of the ROOT database is 6.3 MB (using the minimal default compression
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of TFile), while the size of the raw CEL-files is 28 MB; this presents a more than
4-fold size reduction!

5 Proposal for the extension of R

Statistical analysis of microarray data requires sophisticated software tools. Inter-
estingly, the ”statistical microarray analysis community” has settled on one main
tool, namely R, not only to analyze the data, but also to develop new algorithms for
microarray analysis (Stratowa, 2002). Although R is a great analysis environment,
it has been mentioned numerous times, that R provides limited support for very
large datasets. In order to understand the reason for the proposed extensions to R
it may be worth to compare the properties of R and ROOT. This is accomplished
in the following table:

Property R ROOT
Statistical functions almost all HEP-specific

Language R C++
Interpreter yes CINT
Ability to write scripts yes yes, ”macro.C”
Compilation of scripts no ACLiC: ”macro.C+”
Compilation of code no yes
Writing of functions yes, R yes, C++
Graphical User Interface limited (Tcl/Tk) yes, GUI classes

Data storage capacity Megabyte Petabyte
Data warehouse no TFile, TTree, TChain
RDBMS access MySQL, Oracle MySQL,Oracle,PostGres
GRID interface no PROOF
MMP, SMP, PC-Clusters snow PROOF

Supported architectures Linux, Windows, MacOS X, Sun, SGI, HP, DEC
Public domain GPL yes
Homepage cran.r-project.org root.cern.ch
Online help r-help@stat.math.ethz.ch roottalk@pcroot.cern.ch

It is obvious that extending R to access ROOT files and trees could greatly ex-
pand the use of R as data mining tool with ROOT being used to build a data ware-
house for microarray data. The following simple extensions to read/write ROOT
trees could be sufficient to increase the ability of R to handle large datasets:
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df1 <- read.table(file="/mypath/myfile.root/tree1",

col.names=c("leaf1","leaf2"))

write.table(df1[,1:2],file="/mypath/myfile.root/tree2",

col.names=c("leaf1","leaf2"))

The first statement would convert the data stored in leaf1 and leaf2 of tree1
to an R data.frame, while the second command would store columns 1 and 2 of
data.frame df1 as leaf1 and leaf2, respectively, of tree2 in myfile.root.

Storing other R data as objects in ROOT files would require some more ef-
fort, but could allow to use TFile as alternative machine-independent workspace
in addition to .RData.

6 Summary

The size and complexity of the data generated by expression profiling requires novel
approaches to data storage and analysis. A couple of commercial software providers
offer enterprise software solutions to cope with these problems, however, these solu-
tions seem to be inadequate for very large datasets. While the statistical software
environment R and the dedicated Bioconductor package are at the forefront in the
development and application of methods for microarray analysis, an analogous soft-
ware tool for the development of novel approaches to the storage of microarray
data seems to be missing. For this purpose, the current paper introduces ROOT,
a framework for large-scale data storage and analysis, as an alternative to current
database systems. As a truly scalable distributed data storage and retrieval system,
ROOT is perfectly suited as basis of a common standard for the management and
sharing of microarray data. The proposed extensions to R would permit to access
a ROOT based data warehouse from R.

XPS is an attempt to develop a self-contained data warehouse and data mining
software system for microarray data in the terabyte realm, which is based entirely on
the ROOT data analysis framework. In this paper the current status of the project
is described. Currently, only data storage and analysis of Affymetrix GeneChip
data is supported, however, class headers for the support of cDNA microarray data,
scanned using the Axon GenePix Pro software, exist already. As described, the
current implementation of XPS is script based, however, a standalone application
with an intuitive graphical user interface is already under development (Figure 10).
XPS is work in progress: additional pre-processing and normalization algorithms
need to be implemented. Furthermore, the major microarray analysis tools such as
supervised and unsupervised machine learning methods are still missing. However,
the ability of XPS to export all data as text files permits the usage of external
statistical tools such as R, until the corresponding algorithms are implemented in
XPS.
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XPS: Graphical User Interface

Sorrowly, not yet finished

Figure 10: A developmental version of the XPS graphical user interface. Compare
with Figure 3.
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