New URL: http://www.R-project.org/conferences/DSC-2003/

Proceedings of the 3rd International Workshop
on Distributed Statistical Computing (DSC 2003)
March 20-22, Vienna, Austria ISSN 1609-395X
Kurt Hornik, Friedrich Leisch € Achim Zeileis (eds.)

hitp: / /www. ci.tuwien.ac.at/Conferences/DSC-2003

geoR and geoRglm:
Software for Model-Based Geostatistics

Paulo J. Ribeiro Jr. Ole F. Christensen

Univ. Federal do Parana, Brasil Aarhus Universitet, Denmark

Peter J. Diggle
Lancaster University, UK

Abstract

The packages geoR and geoRglm are contributed packages to the statisti-
cal software system R, implementing methods for model-based geostatistical
data-analysis. In this paper we focus on the capabilities of the packages, the
computational implementation and related issues, and indicate directions for
future developments.

geoR implements methods for Gaussian and transformed Gaussian mod-
els. The package includes functions and methods for reading and preparing
the data, exploratory analysis, inference on model parameters including var-
iogram based and likelihood based methods, and spatial interpolation. The
generic term kriging is used in the geostatistical literature in connection with
several methods of spatial interpolation/prediction. geoR implements classical
“kriging flavours”, simple, ordinary, universal and external trend kriging and
algorithms for conditional simulation. The package also implements Bayesian
methods which take the parameter uncertainty into account when predicting
at specified locations.

The package geoRglm is an extension of geoR for inference in generalised
linear spatial models using Markov chain Monte Carlo (MCMC) methods.
geoRglm implements conditional simulation and Bayesian inference for the
Poisson and Binomial generalised linear models.

1 Introduction

Geostatistics is now recognised as one of the main branches of spatial statistics
Cressie (1993). It deals with modelling and inference for spatially continuous phe-
nomena, S(z), where data Y7,...,Y,, are obtained by sampling at a finite number


http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC' 2003 2

of locations z1,...,2,. In simple cases Y; = S(x;). More generally, Y; is stochas-
tically dependent on S(x;), and can often be considered as a “noisy” version of an
underlying “signal” S(z;).

The main motivation behind the packages geoR (Ribeiro Jr and Diggle, 2001)
and geoRglm (Christensen and Ribeiro Jr, 2002) is the implementation of model-
based methods geostatistical data-analysis (Diggle, Tawn, and Moyeed, 1998),
by which we mean an approach to spatial prediction problems based on explic-
itly declared stochastic models and associated formal methods of statistical infer-
ence. Likelihood based methods are therefore implemented, in particular maxi-
mum likelihood estimation and Bayesian inference. This paper discusses the us-
age of the packages. The underlying theory and algorithms for its implementa-
tion are described in Diggle, Ribeiro Jr, and Christensen (2003) and Diggle and
Ribeiro Jr (2004). The package web pages at http://www.est.ufpr.br/geoR and
http://www.maths.lancs.ac.uk/ christen/geoRglm provide supplementary in-
formation, including illustrative sessions and tutorials.

Section 2 describes geostatistical data objects of the class geodata. Tools for
descriptive spatial analysis are shown in Section 3. The models underlying the
packages are presented in Section 4. Sections 5 to 7 discuss methods implemented
in geoR for inference and prediction under the Gaussian and transformed Gaussian
models. Section 8 presents inference for Binomial and Poisson models implemented
in geoRglm.

Most of the functionality in the two packages is presented here. We refer the
reader to the web-pages, help-files for the functions, and list of references for further
details. The data sets ca20, b64 and rongelap included in the distributions illus-
trate the usage of the functions. The versions at the time of writing are geoR_1.3-12
and geoRglm 0.7-0.

2 Preparing data

In their most basic format geostatistical data consists of n pairs (y;,z;),i =1...n,
where each pair is a location z;, and the observed data value y; measured at this
location. We will assume here that x; is a 2-dimensional vector. Therefore, a
typical and minimal data structure would consist of a vector and a matrix with two
columns.

The class geodata is defined for objects containing geostatistical data. A geodata
object is a list with at least 2 components: coords which is an n x 2 matrix and
data which is an n-dimensional vector. The function as.geodata is used to convert
data from a data-frame format to a geodata object. The function read.geodata is
used to create a geodata object directly from an external text file, which is done by
calling internally first the standard R function read.table and then as.geodata.
For example, the command foo <- read.geodata("foo.txt") reads data, assum-
ing the existence of an ASCII file foo.txt in the working directory with three
columns, the first two containing the coordinates and the third the data values.
Further arguments such as headers, character separation, etc, can be passed to
read.table using the ... mechanism. If the columns are not ordered as assumed
above, the arguments coords.col and data.col can be used to indicate the col-
umn numbers. The function call above assumes default values and is equivalent to
foo <- read.geodata("foo.txt", coords.col=1:2, data.col=3).

Storing data in a geodata object is convenient to facilitate the usage of other
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functions in geoR and geoRglm, but it is not required since arguments coords and
data are available in most of the functions.

The data component of a geodata object can alternatively be a matrix to accom-
modate multivariate response data. In this case, each column contains the values
of one variable. However, just a few functions such as variog make use of this
data format to compute variograms for all variables at once. Multivariate methods
like cross-covariograms and co-kriging are not implemented in geoR/geoRglm. We
refer to the package gstat (Pebesma, 2003) for an implemetation of these methods.
Another more usual form of multivariate data is to have measurements of one or
more covariates at the data locations. In this case the argument coords.col is
used to indicate the column number(s) containing the value(s) of the covariate(s)
and the geodata object will also have another element named covariate.

The data preparation functions also include options for handling NA’s using the
optional argument na.action. Using the argument realisations we can specify
a column, containing numbers indicating different realisations of the process. This
can be used for example to accommodate data collected at different times.

3 Descriptive analysis

Descriptive tools for spatial data allow visualisation of the data variability over
the region and exploration of the spatial correlation. Methods for displaying geo-
statistical data are provided for functions such as plot and points. Furthermore
smoothing techniques, as implemented in the R function loess, can be used to show
the main spatial pattern of the data.

A method for summary computes the range of the coordinates and borders (if
present) and a standard summary for the data and covariates. For instance the
command summary (ca20) would give a summary of the data set ca20.

Typically, an analysis would start by plotting the point locations, the data values
against the coordinates, and a histogram of the data. A 2 x 2 display with these
plots is produced by a method for plot. For example, the command plot(ca20)
will display the ca20 data.

Data transformation is implemented through the argument lambda which takes
a numerical value for the parameter of the Box-Cox family of transformations (Box
and Cox, 1964). If provided to the plot function, the transformed variable is shown
in the plots. For instance, plot(ca20, lambda=0) produces plots of the logarithm
of the data.

A common issue in geostatistical data analysis is trend-removal. If the argument
trend is provided to the plot function, a linear regression is fitted using the R
function 1m and the residuals are used to produce the plot. Input for this argument
is quite flexible: it can be a vector, a matrix or data-frame with the covariate
values, a formula, or a string "1st" or "2nd" which indicates first or second order
polynomials on the coordinates, respectively.

Finally the optional argument borders takes a matrix with the coor-
dinates of the borders of the region which are added to the first plot
in the graphical display. Figure 1 shows the output of the command
plot(ca20, trend="altitude+region, bor=borders) which plots residuals of a
regression against the covariates altitude and region available for this data-set.

Another method to visualise the data is provided for points, which besides the
arguments lambda, trend and borders described above, takes other arguments to
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Figure 1: A typical output of the function plot.geodata for the ca20 data-set.

control the colours and sizes of the points in the plot. Making these proportional
to the data, ranks or specific quantiles of the data, allows for a visualisation of the
spatial pattern. The plots in Figure 2 are produced with the commands:

> points(ca20, borders=borders, x1="W-E", yl="S-N")
> points(ca20, borders=borders, x1="W-E", yl="S-N", pt.d="qui",
cex.max=1, cex.min=1, col="gray")

A common tool to describe the spatial dependence in geostatistics is the empiri-
cal variogram which describes the spatial association as a function of the separation
distance, and is computed as follows. For each pair of data points (z;, y;) and (z;, y;)
we compute u = ||x; — x|, the distance between z; and z;, and v = (y; — y;)?/2.
A scatterplot of v against w for all pairs is the variogram cloud. In practice it is
common to group the points in classes of distances (“bins”), averaging the corre-
sponding u and v values. The averaged v’s results in the binned variogram or sample
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Figure 2: Graphics produced by the function points.geodata for the ca20 data-set
with points sizes (a) and shades of gray (b) proportional to the data.
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where u is a distance class, N, are the pairs in this class, and |V, | is the number
of pairs in N,,.

The function variog is used to compute empirical variograms. It can produce
a variogram cloud or a binned variogram and can either use the estimator (1)
or the Hawkins-Cressie’s modulus estimator (Cressie and Hawkins, 1980). The
arguments lambda and trend can be used for data transformation and trend removal
as described in Section 3. There are also arguments to define the bins. By default the
function computes an omnidirectional variogram but the arguments direction and
tolerance can be used to specify directional variograms. The function variogé
automatically produces variograms for four different directions. The commands

below produce the plots shown in Figure 3.

> ca20.v <- variog(ca20, max.dist=600, trend="altitude+area)
> plot(ca20.v)
> plot(variog4(ca20, max.dist=600, trend="altitude+area))

An object computed by the function variog is of the class variogram, and there
are methods for plot and lines with options which include making point sizes
proportional to the number of pairs and scaling the variogram, among others.

Sometimes it is useful to plot several variograms together, either to compare
several simulations from a model, or to compare variograms of different variables.
If a matrix is provided to the data argument, the function variog computes var-
iograms for each column and a method for plot draws all of these in the same
plot. For example, the code below, where grf is a function for simulating from a
geostatistical model, produces the plot in the left hand panel of Figure 4.

> sim <- grf (100, cov.pars=c(1l, 0.15), nsim=10)
> plot(variog(sim, max.dist=0.7))
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Figure 3: Empirical variograms computed by variog and variog4.
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Figure 4: Some extra functionalities of the function variog: multiple variograms

(left) and variogram envelopes for the ca20 data (right).

A simple Monte Carlo test based on the variogram can be used to check for
evidence of spatial correlation. Under the null hypothesis of no spatial correlation
we can exchange the data values across the locations. Therefore to perform the test:
(i) permute the data locations, (ii) for each permutation compute the variogram,
(iii) calculate variogram “envelopes” using minimum and maximum values at each
bin, (iv) plot the variogram of the original data and check whether it lies inside
the envelopes. The function variog.mc.env is designed to perform this test as
illustrated in the commands below and in the right hand panel of Figure 4.

> ca20.env <- variog.mc.env(ca20, obj=ca20.v)

> plot(ca20.v, env=ca20.env)

4 The geostatistical model

The model underlying both packages assumes that measurements represent a noisy
version of a latent signal process which describes the variability of the random
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variable over the area. The typical goal of a geostatistical analysis is to predict
either the signal over the area or some quantity which can be written as a functional
of the signal.

We specify the geostatistical model as follows. Let S(-) = {S(z) : = € A} be
a Gaussian stochastic process with E[S(z)] = >°7_, f;(2)8;, Var[S(z)] = 0* and
correlation function p(u) = Corr[S(x), S(a’)] where u = ||z — z’|| is the Euclidean
distance between z and z’. Assume that Yi,...,Y,, are conditionally independent
given S(-), with conditional expectations p; and h(u;) = S(z;),s = 1,...,n, for a
known link function h. The signal process is given by {h~1(S(z)) : z € A}. To com-
plete the model specification above we need to define the conditional distribution of
Y; given S(-), and the link function h. The package geoR implements methods which
are appropriated when the conditional distribution is Gaussian and the link is the
identity function with options to include a transformation of the Y-variable chosen
within the Box-Cox family. The Gaussian model is specified by setting lambda = 1
which is the default option for all functions in geoR. The package geoRglm imple-
ments two types of models: the Poisson model with link function in the Box-Cox
class, and the Binomial logistic model. Table 4 summarises the models which are
implemented at the time of writing.

Table 1: Models implemented by the packages geoR and geoRglm

Model Sampling distribution h(p;) package
Gaussian [V;|S(-)] ~ Normal(u;, 7%) ti geoR
Transf. Gaussian  [(Y — 1)/A|S(-)] ~ Normal(u;, 72) 1 geoR
Poisson [Y:]S(-)] ~ Poisson(u;) Box-Cox(;) geoRglm
Binomial [Y:|S(+)] ~ Binomial(N, p;) logit(4;) geoRglm

The correlation function p(u) is specified by a parametric model. There are
several correlation models currently implemented and documented in cov.spatial.
The default is the Matérn model given by

p(u) = {2771 (k) } " (u/ )" Ko (u/9)

where k > 0 and ¢ > 0 are model parameters, and K, denotes a modified Bessel
function of order k. Special cases of this family include the exponential correlation
function, p(u) = exp(—u/¢@), when k = 0.5, and the squared exponential or Gaussian
correlation function, p(u) = exp(—(u/$)?), when ¢ = ¢/(2v/k + 1) and k — oo.
The Matérn family is particularly attractive because the value of the parameter s
controls the smoothness of the underlying signal process.

The model described above is isotropic in the sense that the correlation depends
only on the separation distance, but not on the orientation. A generalisation is
given by the geometric anisotropic model which is isotropic only after some rotation
and stretching of the original coordinates. This adds two extra parameters to the
correlation function, the anisotropy angle ¥ 4 and anisotropy ratio ¢ g.

The possible model parameters can therefore be grouped as follows: transfor-

mation ()\), mean (3’s), variance (02, 72) and correlation (¢, k, 14,1 r) parameters.
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5 Inference for the Gaussian model

The function 1ikfit is designed to find maximum likelihood estimates for the pa-
rameters of the (transformed) Gaussian model described in Section 4. The log-
likelihood function is obtained from the density of the multivariate Gaussian:

1(8,7%,0%,¢,k) o —0.5{log|(c*R + 7%I)| (2)
+(y— FB) (R4 721)" (y — FB)}.

As mentioned in the previous section, generalisations add parameters to the model.
We refer to Diggle et al. (2003) and Christensen, Diggle, and Ribeiro Jr (2001) for
further details.

Numerical optimisation of (3) is required to calculate the maximum likelihood
estimates of the model parameters. The function 1ikfit implements this using the
R optimisation function optim. There are options to fix values for some of the model
parameters (72, \,14,%r). The output is an object of the class variomodel and there
are associated methods for summary, print and lines. Along with the parameter
estimates, the output includes the values of the maximised likelihood, AIC, BIC,
fitted values and residuals. Alternatively, restricted maximum likelihood estimates
(REML) can be obtained by setting the argument method = "REML". The usage of
likfit is illustrated below where, for brevity, we ommit the output of summary.

> ca20.ml <- likfit(ca20, trend="altitude+area, ini=c(100,30))
> ca20.ml
1ikfit: estimated model parameters:

beta0 betal beta2 Dbeta3 tausq sigmasq phi
33.0295 1.3439 7.8171 12.9089 5.4749 97.9126 77.2224

likfit: maximised log-likelihood = -629.0581

> summary(ca20.ml)

The output of 1ikfit can be passed to the function proflik, which computes
profile likelihoods for the model parameters as illustrated in Figure 5. This diagram
is produced with the following command.

> plot(proflik(ca20.ml, geodata=ca20, sill.val=seq(50, 180, 1=11),
range.val=seq(30, 300, 1=11), nugget.val=seq(0, 42, 1=11))).

Another procedure for parameter estimation which is commonly used consists
of fitting the curve of a valid variogram model to the empirical variogram. The
model parameters can then be read directly from the fitted model as illustrated in
Figure 6 with the exponential model fitted to the variogram of the ca20 data. A
common jargon is to refer to the intercept of the curve as the nugget, the difference
between the asymptote and the nugget as the sill, and the distance at which the
theoretical variogram curve reaches its maximum as the range. For models with an
infinite range the value of u at which the variogram reaches 95% of the asymptote,
is called the practical range. These names correspond to the parameters 72, 0% and
¢ respectively, where the latter is usually multiplied by a constant depending on
the model. For instance, the practical range is 3¢ for the exponential, v/3¢ for the
Gaussian, 4¢ and 5.37¢ for the Matérn model with k = 1 and 2, respectively, and
¢ for the spherical model.
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Figure 5: Profile likelihood for the parameters of the model fitted to the ca20 data.
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Figure 6: Exponential variogram model fitted to the ca20 data and estimates of
model parameters.

The function variofit implements non-linear least squares methods for this
curve fitting procedure with options for ordinary and weighted least squares. Alter-
nativelly, fitting a variogram “by eye” interactively can be done using the function
lines.variomodel.

Regardless the method of parameter estimation, the results can be passed to the
function variog.model.env which simulates from the fitted model and generates
envelopes illustrates the statistical uncertainty in the empirical variogram.

6 Spatial prediction for the Gaussian model

Typically in geostatistical applications, interest lies in making inference about S(-),
such as predicting the value of S(-) over the area, or estimating the probability that
S(x) is above a certain threshold value c.

The prediction problem then reduces to studying the conditional distribution
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of S(-) given the observed data y. To do this we consider a grid over the region.
Considering a single value Sy at a generic location xg, under the Gaussian model
(So,Y) is multivariate Gaussian with mean vector (uo, u) = (Fo3, F8) and covari-

ance matrix

0.2 0.2 rT

V= o’r 7% +0°R
where the vector r has elements r; = p(||zg — z;]|), ¢ = 1,...,n. The predictive
distribution [Sp | y] is then Gaussian with mean and variance

ElSo |yl = po+o’r" (P I+0’R)"(y —p)
Var[Sy | y] = o%—o’rT (%I + 0?R) " lo?r.

With all model parameters considered known the equations above are called sim-
ple kriging equations. If the mean vector parameter ( is replaced by its generalised
least squares estimator, B = (F'V-'F)~1F'V 1y, the resulting expression corre-
sponds to ordinary kriging when F' equals a vector or one’s, to universal kriging or
kriging with a trend model when F' corresponds to a polynomial in the coordinates,
and to kriging with external trend when F' is given by a set of covariates.

These formulas are implemented in the function krige . conv, whose name stands
for “conventional kriging”. The inputs for the function are: the geodata object, co-
ordinates of the locations for prediction, and model information, including param-
eter values which are often given by an output object from 1ikfit or variofit.
The model information is typically passed using krige.control. There is also
an argument border allowing the user to compute predictions on a grid within a
non-rectangular area. The function computes estimates of the means and variances
at the prediction locations, the latter called kriging variances. Output options in-
clude simulations from the predictive distribution [Sy|y], estimation of quantiles and
probabilities of being below a specified threshold.

For the transformed model the predictions are returned on the untransformed
scale. In general back-transformation is done by simulation, but for the log trans-
formation (lambda=0), the back-transformation is done analytically using standard
expressions for log-Gaussian kriging.

The output of krige.conv is of the class kriging and associated methods for
image, contour and persp can be used to visualise the predictions as illustrated
in Figure 7. Legends can be added to image plots either by using arguments in
image.kriging or by calling the function legend.krige.

Two cross-validation methods for assessing the goodness of fit are implemented
by the function xvalid. The first is the ”leave-one-out” method where each point is
removed from the data set and predicted using the remaining points, with an option
for re-fitting the model at each run. The second splits the data into two sets, where
one set is used to fit the model and to predict at the locations of the other set. For
each validation location, observed and predicted values and their differences can
be used in different ways to assess the model fitting as, for instance, by plotting
cross-validated residuals against predicted values. The output is an object of class
xvalid, and a method for plot is implemented for displaying the results.

7 Bayesian analysis for the Gaussian model

Bayesian inference treats the model parameters as random variables, adding to the
model the specification of a prior distribution for the parameters. The predictive
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(a)

Figure 7: Kriging results for the ca20 data: (a) predicted values, (b) prediction std.
errors, (¢) map of P(Y < 40), (d) map of ¢, P(Y < q) = 0.10.

distribution [Sp | y] is then obtained by averaging the predictive distribution given
in Section 6 over the different parameter values, with respect to their posterior
distribution. This incorporates uncertainty about the model parameters into the
predictive distribution.

The function krige.bayes implements Bayesian methods for the Gaussian
model, sampling from the posterior distribution of the model parameters and, op-
tionally, performing prediction. The input for this function includes: the geodata
object; locations for prediction (if any); borders as described in Section 6; and
three control functions. The function model.control defines the model to be fit-
ted, i.e. choice of correlation function, covariates, etc., prior.control sets prior
distributions for the model parameters, with options to fix some of them, and
output.control defines what should be returned, as for krige. conv.

The output is of the class kriging. As for krige.conv, methods are pro-
vided for image, contour and persp. However, since this function also enables
inference for the model parameters, methods are also provided for plot, hist,
print and lines. Extra functions such as sample.prior, sample.posterior and
statistics.predictive can be used to explore the output.

Figure 8 shows posterior distributions of the model parameters obtained with
the following commands:

MC <- model.control(trend.l="altitude+region)
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Figure 8: Posterior distributions for the covariance parameters.
PC <- prior.control(tausq.rel.prior = "uniform",

tausq.rel.discrete = seq(0,1,1=11),
phi.dis=seq(0,500,1=51))
ca20.kb <- krige.bayes(ca20, model = MC, prior = PC)
par (mfrow=c(1,3))
hist(ca20.kb)

For computational reasons the algorithm implements discrete priors for the pa-
rameters ¢ and 72, = 72/02. The current version does not implement priors for
either anisotropy or transformation parameters. Prediction results can be explored
and maps produced as for the output of krige.conv. In addition, the function
post2prior facilites sequential Bayesian updating, whereby the posterior from one
stage of a data-analysis can be used as the prior for the next stage. This can be
useful for computations on data which are divided into batches.

8 Inference for the generalised linear spatial model

The classical geostatistical model assumes that data are Gaussian, which may be
an unrealistic assumption for some data sets. An example is the simulated data set
shown below, which consists of binomial data of size 4 at 64 locations.

The generalised linear spatial model provides a framework for analysing such
data; in particular Binomial and Poisson data. The likelihood for a model of this
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kind is in general not expressible in closed form, but only as a high-dimensional
integral

L(67 027¢) = /Hf(yi;h_l(si))p(3;67027¢)d87
=1

where f(y;u) denotes the density of the error distribution parameterised by the
mean i, p(s; 8,02, ¢) is the multivariate Gaussian density for the vector S of random
effects at the data locations and h(-) is the link function. In practice, the high
dimensionality of this integral prevents direct calculation, and inference relies on
Markov chain Monte Carlo (MCMC) methods.

Most of the functionality presented in Section 6 and 7 for the Gaussian model is
implemented for generalised linear models with Poisson error distribution and link
function in the Box-Cox class, or with Binomial error distribution and logistic link
function. Below we describe this briefly.

Here we consider MCMC simulation and prediction, with a focus on pratical
issues related to the MCMC. We will first consider the case where parameters are
known. We use the functions pois.krige and binom.krige.

A Langevin-Hastings algorithm is used to obtain MCMC simulations. The user
must provide a value for the proposal variance S.scale. Optional inputs include
the starting value, S.start, the length of the burn in, burn.in, the thinning, thin,
and the number of iterations, n.iter. This input is provided via the argument
mcme . input, either as a list or by using the function mcmc.control. An example
using the Rongelap data set is given below

ronl <- pois.krige(rongelap, krige=list(cov.pars=c(0.2654,151.5885),
beta=1.8212, nugget = 0.1337),
mcmc . input=mcmc.control(S.scale=0.5, thin=1, n.iter=10000))

As a rule of thumb, S.scale should be chosen such that the acceptance rates for up-
dating the random effects are approximately 60%. Also, we recommend studing the
autocorrelations of the output and thinning such that the stored sample is approx-
imately uncorrelated. For prediction, the argument locations must be provided,
similarly to Sections 6 and 7.
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Figure 10: Traceplots for the parameter ¢ and for the two random effects at locations
marked with a circle in Figure 9.

The procedure above can be extended to Bayesian inference which is imple-
mented by the functions pois.krige.bayes and binom.krige.bayes. Priors are
specified using the prior.glm.control function. If the parameter ¢ is not fixed,
the user must provide for the MCMC-algorithm a scaling for the proposal distribu-
tion of ¢ using the argument phi.scale in the mecmc. control function. The update
for ¢ is a random walk Metropolis type, and phi.scale should be chosen so that
approximately 25% of the proposals are accepted. An example is given below for
the simulated data set shown in Figure 9.

prior.sim <- prior.glm.control(beta.prior="normal", beta=0,
beta.var=1, phi.prior="exponential", phi=0.2,
phi.discrete=seq(0.005,0.3, 1=60),
sigmasq.prio="sc.inv.chisq", df.sigmasq=5,
sigmasq=0.5)

mcme.sim <- mcmc.control(S.scale=0.05, phi.scale=0.015, thin=100,

burn.in = 10000)
b.sim <- binom.krige.bayes(b64, prior=prior.sim, mcmc.input=mcmc.sim)

Output from the MCMC-algorithm is presented in Figure 10 for the parameter ¢
and for the two random effects at locations marked with a circle in Figure 9.

9 Closing remarks

A ToDo file included in the geoR package distribution lists features to be imple-
mented in the near future. Implementation of a wider class of models and meth-
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ods may include tools for spatio-temporal and multivariate models. Functions for
Markov chain Monte Carlo maximum likelihood are planned for geoRglm. The
number of data points the packages are able to handle is limited by the ability
to perform matrix operations on full covariance matrices. With the resources cur-
rently available to us, we can handle up to about 1000 points. One way to improve
efficiency is to incorporate algorithms based on the work of Rue and Tjelmeland
(2002). Another is to use approximate methods, such as model-based analogues of
kriging with local neighbourhoods.

This is machine and memory dependent and with currently available resources
our experience is that the maximum number of points ranges from 500-1000. There-
fore approximate methods of inference for large data sets need also to be imple-
mented.

Another direction is the development of functions for analysing marked point
processes, an area which combines aspects of geostatistical and point processes
methodology (Schlather, Ribeiro Jr, and Diggle, 2003). Spatial statistics can also
take advantage of resources implemented in geographical information systems (GIS)
by interfacing with software such as TERRALIB (http://www.terralib.org) and
GRASS (http://grass.itc.it).
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