
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Sweave and Beyond:

Computations on Text Documents

Friedrich Leisch

Abstract

Sweave is a tool that allows to embed R code in LATEX documents. The
code can be evaluated and the resulting console output, figures and tables are
automatically inserted into the final document. In this paper we first give an
introduction into the Sweave file format, and then demonstrate how to use
these files as R package user guides known as package vignettes. Finally we
give an outlook on the design of the next generation of Sweave, which uses S4
classes and methods and will allow for much more complex computations on
text documents.

1 Introduction

Typical computational work of a statistician includes import/export/storage of
data, analysis of the data and writing reports on the results of the analysis. If
standard analysis methods are not sufficient, or steps of the analysis can be auto-
mated, then “data analysis” may include writing some code on the side. In fact,
the S system has been designed for exactly this paradigm of data analysis, “turning
users into programmers” (Chambers, 1998).

1.1 Literate statistical practice

The code for an analysis (and be it “only” the command history of ones favorite
statistical software package) is probably the most precise description of the analysis
itself, because it allows the analysis to be reproduced. Nevertheless it is common
practice to keep code and manuscripts in separate files (the same is true for data
sets), although data and code could be seen as the “proof” for the results (Buckheit
and Donoho, 1995). After several modifications of one of the files involved things
tend to get out of sync, and in many cases it becomes unclear which version of the
data set and saved code fragments exactly correspond to a report describing the
final results.

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

Data

Text
Document

Program
Code

Analysis

Figure 1: Relations between data storage, analysis, programming and manuscripts.

Hence, data, code and text domains should be integrated to make it comfortable
for the analyst to deal with this objects simultaneously in a convenient way. The
traditional way of writing a report as part of a statistical data analysis project
uses two separate steps: First, the data are analyzed using one’s favorite statistical
software package, and afterwards the results of the analysis (numbers, graphs, . . .)
are used as the basis for a written report. In larger projects the two steps may be
repeated alternately, but the basic procedure remains the same. Many statistical
software packages try to support this process by generating pre-formatted tables
and graphics that can easily be integrated into a final report using copy-and-paste
from the data analysis system to the word processor. The basic paradigm is to
write the report around the results of the analysis.

Another approach for integration of data analysis and document writing is to em-
bed the analysis itself into the document, which reverses the traditional paradigm.
Over the last decade a number of systems have been developed that integrate anal-
ysis and documentation and allow for literate statistical practice (Rossini, 2001;
Rossini and Leisch, 2003).

This paradigm is probably most popular for creation of dynamic web pages and
offers completely new possibilities for teaching statistics and delivering statistical
methodology over the Internet. E.g., the ExploRe system (Härdle, Klinke, and
Müller, 1999) provides means to embed statistical quantlets in web pages or elec-
tronic books to create interactive documents with direct access to a statistical data
analysis package. Another example for a dynamic statistical analysis on a web page
is given in Temple Lang (2001), by embedding R into Netscape as a plugin. Report
rendering is performed using XML and XSL.

Sweave (Leisch, 2002) combines ideas from both worlds described above using
literate programming tools. The purpose is to create dynamic reports, which can
be updated automatically if data or analysis change, while using standard tools for
both data analysis and word processing.

1.2 R package documentation

The main vehicle for documenting R packages are help files, as accessed by the
help() command. The source for the help files is in R documentation format (*.Rd
files). These files contain code mainly in two sections: usage and examples. All

Proceedings of DSC 2003 3

examples in the R help files are by default required to be executable such that the
user can copy & paste the code to a running R process using

• the mouse,

• keyboard shortcuts if running R inside Emacs with ESS (Emacs speaks statis-
tics, Rossini, Heiberger, Sparapani, Mächler, and Hornik, 2003), or

• the example() function directly in R.

Examples should be flagged as non-executable only if there are good reasons, e.g.,
because they require user interactivity like identify() and hence cannot be exe-
cuted in batch mode.

The tools for package quality control available through the R CMD check1 com-
mand test if all examples are executable. In addition, the code in the usage section
is compared with the actual implementation to check for inconsistencies or missing
documentation.

The .Rd format was designed for reference documentation on single R objects
(functions, classes, data sets, . . .), it is not intended for demonstrating the interac-
tion of multiple functions in a package. For this task we have developed the concept
of package vignettes, short to medium-sized documents explaining parts or all of the
functionality of a package in a more informal tone than the strict format of reference
help pages.

This paper is organized as follows: Section 2 gives a short introduction to the
Sweave file format, the focus is on explaining the basic principles rather than all
bells and whistles. Section 3 gives an overview of tools in base R and extension
packages for reading and interacting with Sweave files, especially if they are package
vignettes, and Section 4 shows how to write vignettes and integrate them in an R
package. Finally, Section 5 gives a preview of some features of the next version of
Sweave, a new implementation using S4 classes and methods.

2 Sweave files: A small example

Sweave source files are regular noweb files (Ramsey, 1998) with some additional syn-
tax for fine control over the final output. Noweb is a simple literate programming
tool which allows to combine program source code and the corresponding documen-
tation into a single file. These consist of a sequence of code and documentation
segments, called chunks. Different command line programs are used to extract the
code (“tangle”) or typeset documentation together with the code (“weave”).

A small Sweave file is shown in Figure 2, which contains four code chunks em-
bedded in a simple LATEX document. ‘<<...>>=’ at the beginning of a line marks
the start of a code chunk, while a ‘@’ at the beginning of a line marks the start
of a documentation chunk. Sweave translates this into a regular LATEX document,
which in turn can be compiled by latex to Figure 3.

2.1 The code chunks

The main work of Sweave is done on the code chunks. All code chunks are evaluated
by R in the order they appear in the document2. Within the double angle brackets

1R CMD xxx is Rcmd xxx in the Windows version of R.
2There are ways to suppress evaluation or re-use chunks, which is beyond the scope of this

article.

Proceedings of DSC 2003 4

\documentclass[a4paper]{ article}

\begin{document}

5 <<echo=false ,results=hide >>=

library(lattice)

library(xtable)

data(cats , package ="MASS")

@

10

\section *{The Cats Data}

Consider the \ texttt{cats} regression example from

Venables \& Ripley (1997). The data frame contains

15 measurements of heart and body weight

of \ Sexpr{nrow(cats)} cats (\ Sexpr{sum(cats$Sex =="F")}

female , \ Sexpr{sum(cats$Sex =="M")} male).

A linear regression model of heart weight by sex and

20 gender can be fitted in R using the command

<<>>=

lm1 = lm(Hwt~Bwt*Sex , data=cats)

lm1

@

25 Tests for significance of the coefficients are shown in

Table ~\ref{tab:coef}, a scatter plot including the

regression lines is shown in Figure ~\ref{fig:cats}.

\SweaveOpts{echo=false}

30

<<results=tex >>=

xtable(lm1 ,

caption =" Linear regression model for cats data.",

label ="tab:coef")

35 @

\begin{figure}

\centering

<<fig=true ,width=12, height=6>>=

40 lset(col.whitebg ())

print(xyplot(Hwt~Bwt|Sex , data=cats , type=c("p", "r")))

@

\caption{The cats data from package MASS.}

\label{fig:cats}

45 \end{figure}

\end{document}

Figure 2: A minimal Sweave file: example.Snw.

Proceedings of DSC 2003 5

Estimate Std. Error t value Pr(��� t �)
(Intercept) 2.9813 1.8428 1.62 0.1080

Bwt 2.6364 0.7759 3.40 0.0009
SexM � 4.1654 2.0618 � 2.02 0.0453

Bwt:SexM 1.6763 0.8373 2.00 0.0472

Table 1: Linear regression model for cats data.

Bwt

H
w

t

10

15

20

2 2.5 3 3.5 4

F M

2 2.5 3 3.5 4

Figure 1: The cats data from package MASS.

The Cats Data
Consider the cats regression example from Venables & Ripley (1997). The data
frame contains measurements of heart and body weight of 144 cats (47 female, 97
male).

A linear regression model of heart weight by sex and gender can be fitted in R using
the command

> lm1 = lm(Hwt ~ Bwt * Sex, data = cats)
> lm1

Call:
lm(formula = Hwt ~ Bwt * Sex, data = cats)

Coefficients:
(Intercept) Bwt SexM Bwt:SexM

2.981 2.636 -4.165 1.676

Tests for significance of the coefficients are shown in Table 1, a scatter plot including
the regression lines is shown in Figure 1.

Figure 3: The final document is created by running latex on the intermediate file
example.tex created by Sweave("example.Snw").

Proceedings of DSC 2003 6

we can specify options that control how the code and the corresponding output
are rendered in the final document. The first code chunk (lines 5–8 in Figure 2)
declares that neither the R code (echo=false) nor output (results=hide) shall be
included. The purpose of this chunk is to initialize R by loading packages and data,
we want to hide these technical details from the reader.

Let us skip the text in lines 10–20 for the moment and go directly to the next
code chunk in lines 21–23. It uses the default settings for all options (nothing is
specified within the double angle brackets): both input and output are shown to
the user (see Figure 3), the chunk is rendered such that it emulates the R console
when the code is typed at the prompt. All input and output are automatically
encapsulated in verbatim-like environments.

The next code chunk can be found at lines 31–34. It uses the package xtable
to pretty-print the coefficient matrix of the linear regression model. By specifying
results=tex we tell Sweave that the output of this code chunk is regular TEX code
and hence needs no protection by a verbatim environment.

The last code chunk in lines 39–41 is marked as a figure chunk (fig=true)
such that Sweave creates EPS and PDF files corresponding to the plot created by
the commands in the chunk. Furthermore, an \includegraphics{} statement is
inserted into the LATEX file. Options width and height are passed to R’s graphics
devices and determine the size of the figure in the EPS and PDF files.

In line 29 we use \SweaveOpts{echo=false} to modify the default for option
echo to the value of false for all code chunks following, hence the code for the last
two chunks is not shown in Figure 3. It has exactly the same effect as if we had
included echo=false within the double angle brackets of the two chunks.

2.2 Using S objects in text

Let us now return to the text paragraph in lines 13–17. It contains three \Sexpr{}
statements. Sweave replaces them by the value of the corresponding S expression,
which should be a simple character string (or something that can be coerced to a
string by as.character()). In the example we use it to avoid hard-coding the size
of the data set. If the number of observations changes we do not need to change
anything in our Sweave file, we simply re-run Sweave() and latex and the report
is up-to-date.

3 Computations on Sweave files

3.1 Tangle & weave

Sweave is contained in the standard R package tools (R version 1.5.0 or higher).
The Sweave file example.Snw can be woven into a regular LATEX file using the R
commands

> library(tools)
> Sweave("example.Snw")
Writing to file example.tex
Processing code chunks ...
1 : term hide
2 : echo term verbatim
3 : term tex

Proceedings of DSC 2003 7

4 : term verbatim eps pdf
You can now run LaTeX on example.tex

Sweave shows a status line per code chunk indicating which options are active. The
companion command

R> Stangle("example.Snw")
Writing to file example.R

can be used to extract the code of all chunks into an R source file. If Sweave is used
for literate statistical practice, then these two commands will probably be sufficient
for most purposes such as keeping research reproducible (Leisch and Rossini, 2003).

3.2 Reading vignettes

Books on using S for data analysis like Venables and Ripley (2002) typically contain
a mixture of documentation, code and output. Short documents using a similar style
of writing are ideally suited to explain the functionality of a package to new users.
The directory inst/doc of an R source package may contain package documentation
in arbitrary format, we recommend PDF files due to their platform independence.
For Sweave files additional functionality is available, both from the R command line
and using a graphical user interface.

We call a user guide in in inst/doc a vignette only if it is a document where
the user can extract the R code and interact with it. Currently Sweave is the only
format for such documents that is supported by R, there may be others in the future.
In short: every vignette is a user guide, but not every user guide is a vignette.

3.2.1 Command line interface

Starting with R version 1.8.0 there is support in base R for listing and viewing
package vignettes. The vignette() function works similar to data() and demo().
If no argument is given, a list of all vignettes in all installed packages is returned:

R> vignette()

Vignettes in package ’AnnBuilder’:

AnnBuilder AnnBuilder Basic (source, pdf)
HowTo AnnBuilder HowTo (source, pdf)

Vignettes in package ’Biobase’:

Biobase Biobase Primer (source, pdf)
Bioconductor Howto Bioconductor (source, pdf)
HowTo HowTo HowTo (source, pdf)
esApply esApply Introduction (source, pdf)

...

Vignettes in package ’strucchange’:

Proceedings of DSC 2003 8

strucchange-intro strucchange: An R Package for
Testing for Structural Change in
Linear Regression Models
(source, pdf)

...

After the title of each vignette the list in parenthesis shows which formats are
available; in the example given all vignettes are available both in source and PDF
format. To view the strucchange-intro vignette (Zeileis, Leisch, Hornik, and
Kleiber, 2002), all one has to do is to issue

R> vignette("strucchange-intro")

and the PDF file is opened on the screen. If the source file for a vignette is available,
one can easily get a handle on the code the vignette contains, although we have
not fully automated the procedure yet. First we get the full path to the vignette
directory

R> vigdir = system.file("doc", package="strucchange")

and then we have a look which files it contains

R> list.files(vigdir)
[1] "00Index.dcf"
[2] "strucchange-intro.R"
[3] "strucchange-intro.Rnw"
[4] "strucchange-intro.pdf"
[5] "strucchange-intro.tex"

File strucchange-intro.Rnw is the original Sweave file, strucchange-intro.R has the
extracted R code for all code chunks and could now be executed using source() or
opened in an editor. If the .R file is not available, we can create it in the current
working directory by

R> library("tools")
R> vig = listFilesWithType(vigdir, "vignette")
R> Stangle(vig[1])
Writing to file strucchange-intro.R

where listFilesWithType() returns the full path to all files in vigdir that have
type "vignette", i.e., an extension marking them as Sweave files.

3.2.2 Graphical user interface

The simplest way to access vignettes is probably through the HTML help system.
After help.start(), an index of all vignettes is linked into the beginning of a pack-
ages’ table of contents (if the respective package contains vignettes). Additionally
there is a link to the directory containing the vignettes, e.g., to look at source files
using a browser.

A more advanced interface to package vignettes is available in the Bioconduc-
tor package tkWidgets, available from http://www.bioconductor.org. Function
vExplorer() lists all available vignettes in a nice point & click menu, after selecting
the strucchange vignette the upper left window shown in Figure 4 is opened. The

http://www.bioconductor.org

Proceedings of DSC 2003 9

PDF version of the vignette can be opened by clicking on the “View PDF” button.
Each code chunk of the vignette has a button on the left side of the window, clicking
on the button shows the code in the ”R Source Code” text field. The code can be
executed and the resulting output is shown in the “Results of Execution” area.

The most powerful feature of this kind of interface is that the S code in the
source code field can be modified by the user, e.g., to try variations of the pre-
fabricated examples. To modify the example, one simply edits the code in the ”R
Source Code” area and presses the ”Execute Code” button again.

Dynamic statistical documents and their user interfaces are an open research
area, see also Buttrey, Nolan, and Lang (2001) and Sawitzki (2002) for other ap-
proaches.

Figure 4: Screenshot of vExplorer() showing the vignette from package struc-
change: main controls for code chunk execution (upper left), currently active R
graphics window (lower left) and a PDF viewer (right).

4 Writing Sweave files and package vignettes

The Emacs text editor offers a perfect authoring environment for Sweave, especially
for people who already use Emacs for writing LATEX documents and interacting with
R. ESS allows to connect an Sweave file to a running R process while writing the
document. Code chunks can be sent to R and evaluated using simple keyboard
shortcuts or popup menus. Syntax highlighting, automatic indentation and key-
board shortcuts depend on the location of the pointer: in documentation chunks
Emacs behaves as if editing a standard LATEX file, when the pointer moves to a code
chunk the mode switches automatically to S programming.

Proceedings of DSC 2003 10

However, it is not necessary to use Emacs, Sweave is a standalone system, the
noweb source files for Sweave can be written using any text editor. Even the noweb
syntax in not a necessity, because Sweave is highly configurable. Currently there
are two syntaxes available, the noweb syntax described above and a LATEX-based
syntax. In LATEX syntax the first code chunk of the example looks like

\begin{Scode}{echo=false,results=hide}
library(lattice)
library(xtable)
data(cats, package="MASS")

\end{Scode}

Using a syntax different from noweb is a necessity when complete R packages are
written using literate programming with noweb as proposed by Carey (2001). Using
an XML syntax (see Section 5.2 below) will probably play an important role in
computations on Sweave-type statistical documents by programs different than R,
e.g., to manage vignette repositories.

Once the Sweave file is written, it is almost trivial to include it in an R package
and make it available to users as a package vignette. Consider that file foo.Rnw shall
be used as vignette for package foo. First one needs to add some meta-information
to the file along the lines of

% \VignetteIndexEntry{An R Package for ...}
% \VignetteDepends{foo, bar, ...}
% \VignetteKeyword{kwd1}
% \VignetteKeyword{kwd2}

All of these should be in LATEX comments (after a ‘%’ sign) as we have not de-
fined them as proper LATEX commands. The index entry is used for the listings
of vignette() or vExplorer(), it typically is the same as the title of the doc-
ument (or an abbreviated version thereof). Note that it is directly used in text
and HTML files and hence should not contain any TEX markup. The dependency
information is analogous to the Depends field of a package DESCRIPTION file and
lists packages needed to execute the code in the vignette. The list of \VignetteXXX
meta-information specifications will probably get longer in the near future, espe-
cially for versioning etc.

Once this is done all one has to do is create a subdirectory inst/doc in the
package source tree and copy foo.Rnw to it. The rest is taken care of by the R
package management system, e.g.

• R CMD check will extract the code from the vignette and test if it is executable.

• R CMD build will run Sweave() and pdflatex on the vignette to create the
PDF version.

• The package installation mechanism creates an index of all vignettes in the
package and links it into the HTML help system.

Note that even code chunks with option eval=FALSE are tested by R CMD check,
if you want code in a vignette that should not be tested, move it to a normal LATEX
verbatim environment. The reason for this policy is that users should be able to
rely on code examples to be executable as seen in the vignette.

Proceedings of DSC 2003 11

By including the PDF version in the package sources it is not necessary that the
vignettes can be compiled at install time, i.e., the package author can use private
LATEX extensions or bibtex files. Only the R code inside the vignettes is part of the
checking procedure, typesetting manuals is not part of package quality control.

For more details see also the “Writing R Extensions” manual which features a
section on package vignettes.

In general it is assumed that package authors run R CMD build on their machine
(and may safely assume that only they do that). R CMD check on the other hand
should be runnable by everybody, e.g., CRAN runs a check on all 250+ packages
(as of the time of this writing) on a daily basis, the results are available at http://
cran.r-project.org/src/contrib/checkSummary.html. Bioconductor has opted
for a stricter policy such that even building packages (including running latex on
vignettes) should be reproducible on every machine which has the necessary tools
installed.

5 The next generation: S4weave

The next generation of Sweave is currently in development. Because the current
implementation does not scale up to all ideas we want to realize, we have started to
rewrite the complete code base. Sweave started as a small utility script for personal
use by the author, more and more features were added to either to satisfy personal
needs or user requests as the software became increasingly popular.

The new (unreleased) version is based on

• S4 classes for complete Sweave files including all documentation and code
chunks, syntax definition, . . .

• Computations on document objects rather than serial processing of chunks.

This turns complete Sweave files into first class S objects following one of the basic
principles of S software design (Chambers, 1998).

R> x = read.Sweave("example-3.Snw")
R> x

Call:
read.Sweave(file = "example-3.Snw")

File: example-3.Snw
Syntax: noweb

Class and number of chunks:
SweaveCodeChunk SweaveDocChunk

4 5

Extraction of code and documentation chunks is trivial, as they are slots of the
respective S4 objects:

R> x@chunks[1:2]
[[1]]

\documentclass[a4paper]{article}

http://cran.r-project.org/src/contrib/checkSummary.html
http://cran.r-project.org/src/contrib/checkSummary.html

Proceedings of DSC 2003 12

\begin{document}

[[2]]
eval term hide
library(lattice)
library(xtable)
data(cats, package="MASS")

Both code and documentation chunks have corresponding classes:

R> class(x@chunks[[1]])
[1] "SweaveDocChunk"
R> class(x@chunks[[2]])
[1] "SweaveCodeChunk"

and all computations are methods for those classes.

5.1 Chunk dependencies

One of the goals is to construct a directed graph of chunk dependencies, which in
turn allows for conditional processing of chunks. Consider an Sweave file with the
following series of code chunks:

<<a>>=
...
<>=
...
<<c, depends=a>>=
...
<<d, depends=c>>=
...
<<e, depends=c>>=
...
<<f, depends=d+e>>=
...

A graphical representation of the dependencies can be seen in Figure 5. By
default a chunk depends on every previous chunk, such that, e.g., chunk "b" depends
on "a". However, chunk "c" declares that it only depends on "a". Hence, "c" has
to be re-evaluated only if "a" or "c" itself change, but not if "b" changes. In
general, each node has to be re-evaluated only if any ancestral node in the graph
or the node itself changes. Otherwise cached results from previous computations
can be re-used. Especially for Sweave files with time-consuming computations and
sparse dependency graphs this should speed up processing considerably. The idea
is of course based on the make program, which also does computations only when
necessary (determined by time stamps of files).

5.2 Using XML

For document exchange with other dynamic document systems there is an XML
DTD for Sweave files. Sweave files in XML syntax are not parsed by the Sweave

Proceedings of DSC 2003 13

a

cb

ed

f

Figure 5: Graph of chunk dependencies.

parser, but by xmlTreeParse() from package XML: this allows validation for syn-
tactical correctness. The resulting object is completely equal to those read from
“standard” Sweave files, all methods can be used. SweaveSyntConv() allows fully
automatic conversion between various file formats. By default the syntax of a file
is preserved, e.g.,

R> writeSweaveFile(x)
\documentclass[a4paper]{article}

\begin{document}

<<echo=false,results=hide>>=
library(lattice)
library(xtable)
data(cats, package="MASS")
@
...

but it can easily be changed:

R> writeSweaveFile(x, syntax=SweaveSyntaxXML)
<?xml version="1.0"?>
<!DOCTYPE Sweave SYSTEM "Sweave.dtd">
<Sweave>
<doc><![CDATA[
\documentclass[a4paper]{article}

\begin{document}

]]></doc>
<code options="echo=false,results=hide"><![CDATA[
library(lattice)

Proceedings of DSC 2003 14

library(xtable)
data(cats, package="MASS")
]]></code>
...

6 Summary

Integrated statistical documents are receiving a lot of research interest lately. As the
methodology used in computational statistics is getting more sophisticated all the
time, the citation of textual descriptions (without an implementation) of algorithms
is not necessarily sufficient to reproduce numerical or graphical results. Extensible,
well-defined and open standards are needed in order to combine data, analysis and
text into packaged entities for exchange between researchers as well as for persistent
storage.

Sweave offers a simple yet powerful solution for people familiar with R and LATEX
as almost no additional commands or syntax have to be learned. This way we hope
too attract more people to become authors of integrated statistical documents to
see what features are actually required and used. As Sweave files can now be
converted to S4 objects and regular XML files, more complex computations on text
documents, especially for interactive user interfaces, are possible.

Acknowledgements

vignette() and most of R CMD check was written by Kurt Hornik. vExplorer()
and its helper functions were written by Jeff Gentry and Jianhua Zhang as part of
the Bioconductor project. I want to thank them and Robert Gentleman for helpful
ideas and discussions. Parts of this paper have appeared as a mini-series on Sweave
in R News (Volumes 2/3 and 3/2, respectively).

References

Jonathan Buckheit and David Donoho. WaveLab and reproducible research. URL
http://www-stat.stanford.edu/~donoho/. Statistics Department, Stanford
University, CA, USA, 1995.

Samuel E. Buttrey, Deborah Nolan, and Duncan Temple Lang. An environment for
creating interactive statistical documents. In Edward J. Wegman, Amy Braver-
man, Arnold Goodman, and Padhraic Smyth, editors, Computing Science and
Statistics, volume 33. Interface Foundation of North America, Fairfax Station,
VA, USA, 2001.

Vincent J. Carey. Literate statistical programming: Concepts and tools. Chance,
14(3):46–50, 2001.

John M. Chambers. Programming with data: A guide to the S language. Springer
Verlag, Berlin, Germany, 1998.

Wolfgang Härdle, Sigbert Klinke, and Marlene Müller. XploRe Learning Guide.
Springer Verlag, 1999.

http://www-stat.stanford.edu/~donoho/

Proceedings of DSC 2003 15

Friedrich Leisch. Sweave: Dynamic generation of statistical reports using liter-
ate data analysis. In Wolfgang Härdle and Bernd Rönz, editors, Compstat 2002
— Proceedings in Computational Statistics, pages 575–580. Physika Verlag, Hei-
delberg, Germany, 2002. URL http://www.ci.tuwien.ac.at/~leisch/Sweave.
ISBN 3-7908-1517-9.

Friedrich Leisch and Anthony J. Rossini. Reproducible statistical research. Chance,
16(2):46–50, 2003.

Norman Ramsey. Noweb man page. University of Virginia, USA, 1998. URL
http://www.cs.virginia.edu/~nr/noweb. version 2.9a.

Anthony Rossini. Literate statistical analysis. In Kurt Hornik and Friedrich
Leisch, editors, Proceedings of the 2nd International Workshop on Distributed
Statistical Computing, March 15-17, 2001, Technische Universität Wien, Vienna,
Austria, 2001. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
Proceedings/. ISSN 1609-395X.

Anthony J. Rossini, Richard M. Heiberger, Rodney Sparapani, Martin Mächler,
and Kurt Hornik. Emacs speaks statistics: A multi-platform, multi-package de-
velopment environment for statistical analysis. Journal of Computational and
Graphical Statistics, 2003. (Accepted for publication).

Anthony J. Rossini and Friedrich Leisch. Literate statistical practice. UW Bio-
statistics Working Paper Series 194, University of Washington, WA, USA, 2003.
URL http://www.bepress.com/uwbiostat/paper194.

Günther Sawitzki. Keeping statistics alive in documents. Computational Statistics,
17:65–88, 2002.

Duncan Temple Lang. Embedding S in other languages and environments. In
Kurt Hornik and Friedrich Leisch, editors, Proceedings of the 2nd International
Workshop on Distributed Statistical Computing, March 15-17, 2001, Technische
Universität Wien, Vienna, Austria, 2001. URL http://www.ci.tuwien.ac.at/
Conferences/DSC-2001/Proceedings/. ISSN 1609-395X.

William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Fourth
Edition. Springer, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4/. ISBN
0-387-95457-0.

Achim Zeileis, Friedrich Leisch, Kurt Hornik, and Christian Kleiber. strucchange:
An R package for testing for structural change in linear regression models. Journal
of Statistical Software, 7(2):1–38, 2002. URL http://www.jstatsoft.org/v07/
i02/.

Affiliation

Friedrich Leisch
Institut für Statistik und Wahrscheinlichkeitstheorie
Technische Universität Wien
Wiedner Hauptstraße 8-10/1071
1040 Wien, Austria
E-mail: Friedrich.Leisch@ci.tuwien.ac.at

http://www.ci.tuwien.ac.at/~leisch/Sweave
http://www.cs.virginia.edu/~nr/noweb
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.bepress.com/uwbiostat/paper194
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.jstatsoft.org/v07/i02/
http://www.jstatsoft.org/v07/i02/
mailto:Friedrich.Leisch@ci.tuwien.ac.at

	Introduction
	Literate statistical practice
	R package documentation

	Sweave files: A small example
	The code chunks
	Using S objects in text

	Computations on Sweave files
	Tangle & weave
	Reading vignettes
	Command line interface
	Graphical user interface

	Writing Sweave files and package vignettes
	The next generation: S4weave
	Chunk dependencies
	Using XML

	Summary

