
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Fractals and Statistics:

An R Package Called ifs

Stefano Maria Iacus Davide La Torre

Iterated Function Systems (IFSs) were born in mid eighties (see Hutchinson,
1981; Barnsley and Demko, 1985) as applications of the theory of discrete dynamical
systems and as useful tools to build fractals and other similar sets. Some possible
applications of IFSs can be found in image processing theory (see e.g., Forte and
Vrscay, 1994), in the theory of stochastic growth models and in the theory of random
dynamical systems. In particular they come to great popularity when they have
been proposed as the ‘definitive’ method of images compression. We do not discuss
such aspect here but the reader can refer, for example, to http://www.faqs.org/
faqs/compression-faq/.

We propose to apply (affine) IFSs to statistics. In particular, we are concerned
with the problem of distribution function estimation and related quantities like the
characteristic and density function.

The idea behind the IFSs is the following. Suppose one wants to approximate an
object f , i.e. a function, that is a point in some complete metric space (E, d). The
aim is to construct a contractive operator T : E → E with a unique fixed point f̃ ,
i.e. T f̃ = f̃ , in such a way that d(f, f̃) is minimum. In our case E will be the space
of distribution functions on a compact set [a, b] and d is the sup-norm distance.
Alternatively, one can consider to start from the space of measures on [a, b] and use
the Hutchinson metric (for details see Iacus and La Torre, 2002). From now on, we
will consider the compact set [a, b] = [0, 1] without loss of generality. We introduce
the IFS operator as follows: for any distribution function G ∈ E

TG(x) =
N∑

i=1

piG
(
w−1

i (x)
)

where wi are affine maps (wi(x) = ai + si · x), and w−1
i , the inverse function of wi,

are increasing and continuous. The pi are the IFS coefficients that are essentially
a probability distribution, i.e.

∑
i pi = 1 and pi ≥ 0. Given a target distribution

function F , wi and pi depend on F . The number of coefficients and maps N depend
on the quality of the approximation one desires, in the sense that it is always possible
to choose N = Nε such that for the fixed point F̃ of T one has d(F̃ , F ) < ε.

New URL: http://www.R-project.org/conferences/DSC-2003/ 

http://www.faqs.org/faqs/compression-faq/
http://www.faqs.org/faqs/compression-faq/
http://www.R-project.org/conferences/DSC-2003/


Proceedings of DSC 2003 2

In the IFS theory it is always a problem to choose the pi and the maps wi.
For a fixed target F (i.e. an image to compress) usually, a set of maps wi is
chosen and the pi are determined as solutions of some minimization procedure.
In our case the target F is not known, thus the problem is to find a method to
express the maps wi and/or the coefficients pi of T in terms of the sample data,
say (x1, x2, . . . , xn). Two different approaches are available at present: for a fixed
number N , choose the so-called wavelets maps (see below) and then use the sample
moments m = (m1, . . . ,mM ) , M > N , to build a quadratic form

ptQp + btp + c

where Q = Q(m), b = b(m) and c = c(m). The solution of the minimization
problem for Q is the vector p of the pi’s. This quadratic form measures the distance
between the moments of the IFS and the vector of sample moments m. Two sets
of wavelet maps are of interest (see Iacus and La Torre, 2002). One of these sets is
constructed as follows: let i∗ be such that N =

∑i∗

i=1 2i and define

W1 = {w1 = h11, w2 = h12, w3 = h21, . . . , w6 = h24, w7 = h31, . . . , wN = hi∗2i∗ }

with
hij =

x + j − 1
2i

, i = 1, 2, . . . , i∗ j = 1, 2, . . . , 2i .

In this approach, the maps are always fixed a priori. The second approach consists
in using the so called quantile maps defined as follows

Wq = {wi(x) = (q̂i+1 − q̂i)x + q̂i, i = 1, 2, . . . , N} .

where q̂i are the sample quantiles of order 1/N and the coefficients pi are all equal
to 1/N . In this case, the pi are fixed a priori.
Affine IFSs are very simple and tractable objects. In fact, if T is the IFS with some
fixed point F̃ then the Fourier transform of T has a fixed point which is the Fourier
transform of F̃ . Thus, for an affine IFS its Fourier transform is itself an IFS that
can be written as

Bφ(t) =
N∑

k=1

pke−itakφ(skt)

where now B is the operator on the space of characteristic functions. So, once the
pi and wi are available, one has at the same time a distribution function and a
Fourier transform estimator. Thus, using classical Fourier analysis, one can deduce
a density function estimator (assuming that a density exists) as follows

f̂(x) =
1
2π

+m∑
k=−m

φ̃(k)eikx (1)

where φ̃ is the fixed point of B.

Properties of the IFS estimator and perspective usage

Figure 1 shows the fractal nature of the IFS: one can notice that the IFS is built as
rescaled copies of itself. IFS estimators of both approaches (quantile and wavelet)
have good properties for small sample size as they are in general smoother than



Proceedings of DSC 2003 3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

0.00 0.05 0.10 0.15 0.20

0.
00

0.
01

0.
02

0.
03

0.
04

x

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

00
0.

00
05

0.
00

10
0.

00
15

x

0.000 0.002 0.004 0.006 0.008 0.010

0e
+0

0
2e

−0
5

4e
−0

5
6e

−0
5

x

Figure 1: The fractal nature of the (quantile) IFS distribution function estimator.
The dotted line is the underlying truncated Gaussian distribution. The dotted
rectangle is to represent the area zoomed in the next plot (left to right, up to down).
The dotted boxes are in the order: [0, q̂2]× [0, q̂2], [0, q̂2

2 ]× [0, q̂2
2 ] and [0, q̂3

2 ]× [0, q̂3
2 ].



Proceedings of DSC 2003 4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Kernel vs IFS

x

Figure 2: Old Faithful geyser data rescaled on [0,1]. Dotted line is the kernel estima-
tor (bw=0.03, kernel=Gaussian), solid line is the IFS-Fourier expansion estimator
(iterated 2 times, 26 Fourier coefficients).

the empirical distribution function (e.d.f). Asymptotically they are equivalent to
the e.d.f and it is possible to establish a Glivenko-Cantelli type theorem and law of
iterated logarithm results (Iacus and La Torre, 2002).

The self-similarity of the IFS estimator allows very interesting extensions in fields
where the e.d.f. it is not usually an appropriate estimator. Consider for example
to have a distribution function on [a, b] where data are observed after a censoring
on both sides, i.e. we can only observe data on a subset [c, d] ⊂ [a, b]. The IFS is
still able to reconstruct a distribution function on the whole [a, b] by copying and
rescaling itself on the intervals [a, c] and [d, b]. This arbitrary approximation will
be better, in many cases, then the one based on the e.d.f. which returns 0 on [a, c]
and 1 on [d, b].

To use IFS in practice, once the wi and pi are given, to obtain the estimate it
is only necessary to iterate the functional starting from any point of the space. In
particular, for the distribution functions one can start from the uniform distribution
on [a, b] and iterate till convergence. It appears that in general the convergence is
rather fast. Indeed, 3 to 5 iterations are sufficient.

In Figure 2 an application to Old Faithful geyser data is presented. The IFS
density estimator is plotted against the usual kernel one. This example is presented
to show the ability of the IFS to discriminate the two subpopulations.

What’s inside the ifs package?

The ifs package for R is currently available on CRAN. Apart from the R interface,
the internal source C code is easily portable to other languages. Anyway, once you
have loaded the package (library(ifs)) there is very few to get the IFS estimate.
Suppose that F is the unknown distribution function with density f assuming that
it exists. The very first thing you can do is to run the examples. The main function



Proceedings of DSC 2003 5

of the package is

ifs(x, p, s, a, k = 5)

which accepts in input the point x where to evaluate the estimator of F (x), p is
the vector of coefficients, and s and a are the vectors containing the coefficients of
the affine maps wi(x) = ai + si · x. The number of iterations is k by default set to
5. As you see, this function doesn’t know about estimation, it simply generates the
fixed point of an IFS. This means that maps and coefficient have to be generated
from the data by using one of the two approaches presented above. The function
ifs starts iterating from the uniform distribution. If you don’t trust us about the
speed of convergence and the unicity of the fixed point, you can provide your own
initial distribution function using the ifs.flex(x, p, s, a, k = 5, f = NULL)
function. It is the same as ifs where the argument f is a user defined distribution
function. To setup the parameters p, a and s one can use the function

ifs.setup(y, maps = "quantile", qtl)

where y is the vector containing the sample data and maps is the switch that can
assume three values: quantile, wl1 and wl2. The last two are for the wavelet
IFS. The argument qtl is only considered by the function if you do not provide the
vector y because it is intended to work directly with the quantiles provided by the
user in the vector qtl. It is ignored if maps is not set to quantile.

The ifs.setup returns a list of vectors that are the vector of empirical mo-
ments m, the coefficients a and s and the number of maps n. You can pass
these parameters as inputs to ifs. A more speedy way to obtain the IFS es-
timator is the function IFS(y, k = 5, q = 0.5, f = NULL, n = 512, maps =
c("quantile", "wl1", "wl2")). In this function y is the vector of sample ob-
servations, k is the number of iterations, n is the number of points where the esti-
mator is evaluated and q is the proportion of quantiles you want to use, where the
number of quantiles used will be length(y) * q. This function returns a list of
the x and y coordinates that can be used to plot the estimator. For example try:
y<-rbeta(50,.5,.1); plot(IFS(y)).

If you want to use the wavelet IFS estimator you have firstly to build the
quadratic form and then minimize it. Use the function setQF(m, s, a, n = 10)
to build the quadratic form. Here m is the vector of moments, s and a are as above
and n is the number of coefficient to use. This is different from above because s
and a can have length bigger than n. The problem is that the dimension of the
quadratic form depends on this n and consequently the minimization problem for
it. In output this function returns a list of two objects: the matrix Q and the
vector b of the quadratic form x′Qx + b′x. Once these are available you can use
ifs.cf(Q,b) to obtain the parameters pi. This function is rather far from being
optimized. The problem is that x′Qx + b′x has to be minimized over the simplex∑

i xi = 1 and xi ≥ 0. In fact, the quadprog package cannot be used as Q is not
positive definite. Thus, inside ifs.cf we use the constrained version of optim with
L-BFGS-B method and we minimize the function

fr <- function(x) t(x) %*% Q %*% x + b %*% x + (1-sum(x))^2

i.e. we use a penalization approach. This guarantees, due to the constraints,
that the minimum of fr coincides with the minimum of the quadratic form when
sum(x)==1 is TRUE (the converse does not hold in general).



Proceedings of DSC 2003 6

The last set of functions concerns the Fourier transform of the IFS and its
inverses (both density function and distribution function). The function ifs.FT
evaluates the Fourier transform at some point x. The usual parameters should be
passed as arguments. The function ifs.setup.FT(m, p, s, a, k = 2, cutoff)
is used to build the coefficients of the anti Fourier transform. The parameters p, s,
a and k are as above with m is the number of coefficients to calculate. The cutoff
parameter is used to determine the number of significant coefficients to use in the
anti Fourier transform (e.g. in equation (1)). If you do not specify it the cutoff is
set to 2/(n + 1), where n is the sample size. Given the cutoff, then the following
rule of thumb is used:

“if
∣∣∣φ̃(j + 1)

∣∣∣2 and
∣∣∣φ̃(j + 2)

∣∣∣2 < cutoff then use the first j coefficients”.

This rule has been applied to the data in Figure 2.
The function ifs.setup.FT returns a vector of Fourier coefficients b and the

scalar nterms that is the number of significant coefficients to use according to the
above rule. The functions ifs.pf.FT(x,b,nterms) and ifs.df.FT(x,b,nterms)
evaluate respectively the probability distribution function and the density function
at point x given the Fourier coefficients b using nterms coefficients. The last two
functions: IFS.pf.FT and IFS.df.FT are the analogues of IFS. Given a vector of
sample data y, they return a list of n coordinates (x, y) that can be used to plot the
estimated distribution function and density curves. The number of iterations is k
and the maps are chosen according to the argument maps.

References

M. F. Barnsley and S. Demko. Iterated function systems and the global construction
of fractals. Proceedings of the Royal Society of London, Series A, 399:243–275,
1985.

B. Forte and E. R. Vrscay. Solving the inverse problem for function/image ap-
proximation using iterated function systems, I. Theoretical basis. Fractal, 2(3):
325–334, 1994.

J. Hutchinson. Fractals and self-similarity. Indiana University Journal of Mathe-
matics, 30(5):713–747, 1981.

S. M. Iacus and D. La Torre. On fractal distribution function estimation and applica-
tions. Journal of Applied Mathematics and Decision Sciences, 2002. forthcoming.

Affilitation

Stefano Maria Iacus (corresponding author), Davide La Torre
Department of Economics
University of Milan
Via Conservatorio 7
I-20122 Milan - Italy
E-mail: stefano.iacus@unimi.it, davide.latorre@unimi.it.

mailto:stefano.iacus@unimi.it
mailto:davide.latorre@unimi.it

