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Abstract

Kriging is one of the most frequently used prediction methods in spatial
data analysis. This paper examines which steps of the underlying algorithms
can be performed in parallel on a PVM cluster. It will be shown, that some
properties of the so called kriging equations can be used to improve the paral-
lelized version of the algorithm. The implementation is based on R and PVM
(Parallel Virtual Machine). An example will show the impact of different
parameter settings and cluster configurations on the computing performance.

1 The classical form of kriging

One of the aims of geostatistical analysis is the prediction of a variable of interest at
unmeasured locations. The prediction method which is used most often is kriging. It
is based on the concept of so called regionalized variables Z(x) with x ∈ D ⊂ Rd, d =
2, 3. Analysis usually starts with a spatial dataset consisting of measurements
Z(xi), i ∈ I at a grid of observation points xi. These values are now treated as a
realization of the underlying stochastical process Z(x) and modeled with a usual
regression setup Z(x) = m(x) + ε(x), E(ε(x)) = 0. Of course it is not possible to
make inference from only one realization. The idea of regionalized variables is now
to partition the region D into nearly independent parts and to use them as different
realizations. This is only valid if a stationarity assumption holds:

m(x) = const, x ∈ D (1)
Cov(Z(xi), Z(xj)) = C(h), h = xi − xj , xi, xj ∈ D (2)

That means that mean and covariance function m(h) and C(h) are assumed to be
translation invariant. A more general assumption, called intrinsic stationarity, only
demands that the variance of the increments of Z(.) has to be invariant with respect
to translation:

Var(Z(xi)− Z(xj)) = 2γ(h) (3)
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Equation (3) introduces also the semivariogram γ(h). It is connected with the
covariance function via γ(h) = C(0) − C(h) if C(h) exists. In simple cases γ(.)
depends only on ||h|| = h. This also introduces isotropic variograms and covariance
functions. Both will later be used to determine the system matrix in the prediction
step. Therefore it is necessary to estimate the semivariogram. The usual estimator
in the isotropic case γ(h) = γ(h) with h = ||h|| is

γ̂(h) =
1

2 N(h)

∑
xi−xj∈L(h)

(Z(xi)− Z(xj))
2 (4)

where L(h) is an interval (lag) [hl, hu] containing h and N(h) denotes the number of
pairs (xi, xj) falling into the lag L(h). Semivariogram functions have the property
of negative semi-definiteness. This makes it necessary to fit a valid semivariogram
function to the estimated γ̂(h). Often used semivariograms models are e.g. the
spherical or the exponential model. Most semivariogram models are parametrized
by the so called nugget parameter c0 (it describes discontinuities at the origin), a
range parameter r (equals the correlation radius) and the sill parameter cs (maxi-
mum semivariogram value taken outside of the range).

The estimator used by kriging for prediction at a location x0 ∈ D has the linear
form

Ẑ(x0) = λ>Z (5)

with the kriging weights λ = (λi)i∈I and the data vector Z = (Z(xi))i∈I . Depending
on the modeling assumptions regarding m(x) two variants of kriging can be differ-
entiated: Ordinary kriging which uses a constant trend model m(x) = const and
universal kriging which models m(x) with a parameter-linear setup m(x) = θ>f(x)
with a parameter vector θ ∈ Rp and a set of regression functions fj(x), j =
1, . . . , p. The kriging weights λ are now chosen by minimizing the prediction vari-
ance σK(x0) = Var(Ẑ(x0)) under the condition of unbiasedness E(Ẑ(x0)) = Z(x0)),
which is also called universality condition in this context and evaluates to Σi∈Iλi = 1
for ordinary kriging and F>λ = f

0
for universal kriging using the design matrix

F = (f(xi))
>
i∈I and f

0
= f(x0).

Minimizing σK(x0) finally leads to the kriging equation(
C F
F> 0

) (
λ
θ

)
=

(
c0

f
0

)
(6)

with the covariance matrix C = (C(xi−xj))i,j∈I and the vector c0 = (C(x0−xi))i∈I .
Ordinary kriging can be regarded as special case of universal kriging with p = 1,
f(x0) = 1 and F = 1 = (1)>i∈I .

Because usually correlation vanishes if the distance of two points increases it is
only necessary to take points within a certain distance around a prediction point into
account for building the kriging equation system. This area around prediction points
is called search neighborhood and its radius corresponds to the range parameter of
the semivariogram. More details can be found in Cressie [1993].

Kriging prediction for the location x0 now consists of three steps:

1. Estimation of the semivariogram γ by (4),
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2. semivariogram model fitting,

3. solving equation (6) to determine the kriging weights λ and calculation of
Ẑ(x0).

Usually prediction is carried out not only for one point x0. The final output of
kriging are prediction maps, that means kriging is performed for each point of a
discrete prediction grid. If the goal is to produce high quality prediction maps then
dense prediction grids have to be used. This clearly enlarges the computational
burden. Therefore it can be helpful to consider alternative approaches like parallel
programming in this context.

2 Parallelizing spatial prediction

An algorithm can only be successfully reprogrammed in a parallelized manner if
it contains blocks which can be executed independently of each other. Now it is
necessary to examine the three steps of kriging prediction mentioned above for their
potential to be executed in parallel. It will be assumed that this prediction has to
be performed at the points of a discrete grid.

The first step, semivariogram estimation, has only to be executed once per
data set and prediction grid. This holds also for the second step, semivariogram
fitting. This step includes usually much interaction by the analyst, e.g. choosing
the appropriate semivariogram model, which can not be done in an automated
manner. But the last step consists of sequential repeated solving of kriging equation
systems for each grid point. In this case also the condition of independence of the
computations for different grid points holds. So clearly this steps qualifies as a
candidate for parallel execution and it will be covered in the next sections.

A simple parallel version of kriging would consist of distributing the task of
predicting at the points of the prediction grid to the members of some computing
cluster. A supervising process has to manage the distribution of these tasks, to
collect the results from the cluster members and to feed the cluster members with
new grid points until prediction for all points is done. In an initialization step
at the start of prediction all cluster members have to get the whole data set and
semivariogram parameters from the supervising process. This process should also
be responsible for some error checking.

Another idea would be to divide the dataset into smaller parts and to feed these
parts to the cluster members for prediction at one or more grid locations. This
could help in situations where huge datasets occur, which can not be handled at
once because of resource limitations. The following sections will discuss the first
idea in detail.

3 Improving parallel kriging computation

It can be helpful to search for properties, which allow a more effective way of
parallelization. If we consider the kriging prediction grid and the above mentioned
parallel version of the usually sequentially performed prediction on a grid, it turns
out that the prediction at grid points, which are located very close to another, will
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supervizing process cluster clients

Figure 1: Schematic overview of parallel prediction on a grid

yield very similar results. This is caused by the fact that both points share many
of their neighbours and their distances to these neighbors will be very similar. In
other words their search neighborhoods will be almost identical. Now this brings
up the idea to handle both points x1 and x2 simultaneously.
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Figure 2: Merging search neighborhoods

Usually both krige systems are set up by establishing individual search neighbor-
hoods Si = {xi | ‖xi − x0i‖ ≤ r} and calculating the components CSi

, FSi
, c0i and

f(x0i) i = 1, 2 of the system matrices. After merging both search neighborhoods
into Si ∪ S2 and using these points for prediction at x1 and x2 the system matrices
of both kriging systems will coincide. The systems differ only in their right hand
sides f

0i
and of course in their solution vectors λi, i = 1, 2. Using the covariance

matrix CS1∪S2 , the design matrix FS1∪S2 and the vectors c0i and f(x0i), i = 1, 2,
the following krige system can be established:(

CS1∪S2 FS1∪S2

F>S1∪S2
0

) (
λ1 λ2

θ1 θ2

)
=

(
c01 c02

f(x01) f(x02)

)
(7)

It consists of a system of linear equations with multiple right hand sides and a
solution matrix Λ = (λ1, λ2). Standard numerical libraries contain algorithms
which can solve such systems simultaneously. This implementation uses the Fortran
function DGESV from LAPACK.

3.1 Tiled grid kriging

The idea of collecting neighboring grid points into jobs, which should be performed
by a single cluster member, will be called “tiled grid kriging”. The prediction grid
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is now assumed to be a regular rectangular grid with grid spacing dx and dy. This
grid is divided into rectangular subsets of an equal number tx × ty of grid points,
called “tiles”.

tile(1,1)

Figure 3: Tiled grid kriging

The idea of equation (7) can be extended to combine the search neighborhoods
of m points xi. Now the covariance matrix C∪iSi

, the design matrix F∪iSi
and the

vectors c0i and f(x0i) form the kriging system(
C∪iSi

F∪iSi

F>∪iSi
0

) (
λ1 · · · λm

θ1 · · · θm

)
=

(
c01 · · · c0m

f(x01) · · · f(x0m)

)
(8)

Again it is possible to solve this matrix equation simultaneously, e.g. using the
DGESV routine with appropriate parameters, see Anderson et al. [1999].

The benefit of this approach is that now m = tx × ty points can be handled in
one step which will increase computational efficiency significantly. Additionally this
will reduce communication and management overhead in the cluster setup because
we can replace m data and result transfers by a single one.

3.2 Border effects

Unfortunately the “tiled grid” approach has the drawback of extending the so called
border effect into the interior of the prediction grid. The border effect consists of
errors caused by extrapolation at the borders of the prediction area. Now each
“tile” can be viewed as such a prediction area and consequently the prediction error
increases at the outer points of the tile. As a consequence the tile borders become
visible in contour line plots of the resulting map, because the contour lines don’t
pass smoothly from tile to tile.

To reduce this effect it is necessary to extend the “tiled grid kriging” approach.
The tiles are now allowed to overlap each other to some extent at their borders, say
ox points in x-direction and oy points in y-direction. Now for the grid points where
tiles overlap the prediction will be performed more than once. For these points the
final prediction result will be calculated as arithmetic mean of all the results from
different tiles. This operation has again to be done by the supervising process.

Of course this approach will loose some of the efficiency gains from the last sec-
tion. Finally it will be the task of the user to find a trade-off between computational
effort and output quality.
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tile(1,1)

Figure 4: Tiled grid kriging with overlapping tiles

4 Implementation with PVM and R

The implementation is based on both R and PVM. The functions for parallel kriging
are implemented in an R library called pvmkrige1. Figure 5 gives a schematic
overview of the interactions between R and PVM. This idea has bee implemented
with help of H. Tschofenig and N. Samonig (see Tschofenig [2001] and Samonig
[2001]).

R PVM server

PVM clients

Figure 5: Schematic overview of PVM kriging with R

The advantage of using R and PVM consists in the convenient way to extend
existing software with self written routines. PVM consists of some management
programs and an API to its base library. It is ported to many computer platforms
and so it makes it possible to use very heterogeneous hardware as a large virtual
cluster over standard network connections. For more details see e.g. Geist et al.
[1995].

The R interface function krige.pvm.tiles prepares the data set and passes it
together with variogram, grid and tile parameters to a PVM master process called
krige_server. This PVM program establishes the PVM cluster and starts the
PVM client programs krige_client on each cluster node. Then it sends the data
set and variogram parameters once to each client. After this is done, the PVM

1available at ftp://ftp-stat.uni-klu.ac.at/pub/R/contrib

ftp://ftp-stat.uni-klu.ac.at/pub/R/contrib


Proceedings of DSC 2003 7

master starts dividing the grid into tiles according to the parameters for tile sizes
and tile overlapping given from R. Then it establishes a work queue of tiles and
subsequently feeds the clients with tile parameters and waits for their results. This
is repeated until the work queue is empty. It has also to detect whether some clients
crash or timeout and has to re-send those tiles to another client. After it received
all results back it calculates the arithmetic mean at points where tiles overlap and
returns the predicted grid to R.

The library pvmkrige is based on the R library sgeostat and uses the same
object types and print and plot methods. The main part of the krige_client
programs is the Fortran call to DGESV for solving the kriging matrix equations. It
is planned to re-implement parts of the krige_server program using the R library
rpvm.

5 Example

The example uses the same data set as the examples for the functions in the R library
sgeostat and gstat. It represents zinc data from a soil measurement campaign
in a flood plain of the river Meuse (Netherlands). For comparison with sequential
kriging another R library was used. This is the rgeostat2 library, which extends the
sgeostat library with a Fortran based kriging function krige.grid. Additionally
two R functions krige.tiles and krige.tilesov implementing sequential versions
of tiled grid kriging exist. The first comparison covers only non PVM kriging
showing the impact of switching over to tiles, see Figure 6.
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Figure 6: Comparison of different tile setups

Figure 7 shows the impact of different cluster setups. It can also be seen that
greater overlap parameters slow down the prediction. Unfortunately these results

2also available at ftp://ftp-stat.uni-klu.ac.at/pub/R/contrib

ftp://ftp-stat.uni-klu.ac.at/pub/R/contrib
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are not comparable with Figure 6. The reason is the heterogenity of the PVM clus-
ter in use. While the results shown in Figure 6 where produced on a recent Alpha
workstation (UP 2000) the PVM cluster consists mainly of very old and slow ma-
chines (also Alpha) connected partially only over 10Mbit ethernet. Figure 8 shows
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Figure 7: Comparison of different PVM cluster setups

a screenshot of XPVM displaying the PVM trace log of one kriging calculation.
What can be seen are the single tile computing steps and the communication be-
tween the PVM master process and its clients. Finally figure 9 shows the kriging
maps produced by PVM kriging with and without overlapping tile parameters.
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Figure 8: XPVM screenshot

Figure 9: PVM tile kriging output, tile size 5× 5 (ox = oy = 2 in right picture)
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