
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Ten Years of Octave—

Recent Developments

and Plans for the Future

John W. Eaton James B. Rawlings

Abstract

GNU Octave (http://www.octave.org) has been publicly available for
more than ten years. During that time the scope of the project has grown
from a simple interface to numerical tools intended for classroom use to a
capable system with thousands of users worldwide.

This paper describes in detail some recently completed additions to Octave
and provides a summary of some current and future projects.

1 Introduction

The original motivation for writing Octave was to provide software to accompany
an undergraduate textbook on chemical reaction engineering. That textbook is
now available, together with Octave code to compute all the figures and examples
discussed in the book (Rawlings and Ekerdt, 2002)1.

With the publication of the textbook, we have finally met the goal we origi-
nally set. In the meantime, Octave has become much more widely used than we
ever imagined at the start of the project. In addition to using Octave to support
our teaching2 and research activities, Octave is used by others for teaching numer-
ical analysis, computer programming, simulation, modeling, supporting secondary
school instruction, and for a wide variety of industrial and academic research ap-
plications including signal processing, statistical genetics, computer vision, econo-
metrics, neuroscience, and computational biology.

1Code and more information is available on the web at http://www.che.wisc.edu/~jbraw/

chemreacfun.
2We have used Octave to teach a several courses at UW-Madison in a classroom using a wireless

network and notebook computers issued to all the students. By giving the students access to
computational tools during the lecture, we were able to much more successfully integrate computing
in the course.

New URL: http://www.R-project.org/conferences/DSC-2003/ 

http://www.octave.org
http://www.che.wisc.edu/~jbraw/chemreacfun
http://www.che.wisc.edu/~jbraw/chemreacfun
http://www.R-project.org/conferences/DSC-2003/


Proceedings of DSC 2003 2

When we first started thinking about Octave, we had just become aware of the
original Fortran version of Matlab3, and by the time coding actually began, grow-
ing number of our colleagues were beginning to use the new commercial version of
Matlab as their primary computational tool. We eventually decided to implement
something that would be mostly Matlab-compatible so that our colleagues could
switch to using Octave without having to learn a completely new language.

Making Octave freely available has also contributed to its success, as has the
growing popularity of GNU/Linux systems, but Octave’s compatibility with Mat-
lab is probably equally important. Many people become interested in Octave be-
cause they hear it is a “Matlab clone”4 available free of charge. The problems as-
sociated with this perception and with language compatibility issues are discussed
by Eaton (2001), who argued for abandoning Matlab compatibility entirely. If
we were designing a new language from scratch we might take that approach. But
given that the language used by Octave is already very close to Matlab and that
many (most?) people using Octave have chosen it because it offers compatibility, it
seems that differences in behavior only cause trouble, even if those differences can
be justified on the grounds of correctness or for consistency in the language. So
instead of trying to correct any perceived misfeatures of Matlab, we are actively
working to remove the differences, making an increasingly large body of existing
Matlab code (much of it freely available) accessible to Octave users. Ideally, it
will be trivial to “port” code from Matlab to Octave.

Recent changes to enhance compatibility include the addition of cell and struc-
ture arrays (multidimensional lists and tables), a new representation for variable-
length argument lists, subfunctions, function handles, and many other smaller im-
provements. Projects that are currently underway to improve compatibility include
the addition of multidimensional numeric arrays and sparse matrices. In addition,
a number of new features have been added and improvements made that are not
directly related to Matlab. These include the addition of a numeric value to repre-
sent missing values that is compatible with GNU R, improved differential equation
solvers, an interface to MPI (message passing interface for parallel processing), and
a method for communicating with R (allowing Octave to execute R code and R
to execute Octave code), and a better method for signal handling. The following
sections examine these additions in more detail.

Ideas for other future projects include the addition of banded, triangular, sym-
metric, or other specialized matrix types, improved graphics, GUI features, and
linkage to other scripting languages (possibilities include Guile, Python, Perl, Ruby,
etc.) following the method used by the R-Octave interface.

2 Recent changes

2.1 Changes for compatibility with Matlab

The following changes have been made not only to improve Octave’s compatibility
with Matlab, but also to improve its overall capabilities. In some cases (for ex-
ample, cell and structure arrays and variable argument lists), Octave already had
similar capabilities, but the new code offers additional features and more flexibil-
ity. In other cases (for example, subfunctions and function handles), the changes

3Matlab and Handle Graphics are registered trademarks of the MathWorks, Inc.
4We have never referred to it this way.



Proceedings of DSC 2003 3

implement completely new concepts for Octave.

2.1.1 Cell and structure arrays

Matlab’s cell array is a multidimensional indexed container object that can hold
any other type of object.

One-dimensional lists have been available in Octave for several years. Although
it is possible use them to mimic multidimensional lists (a list of lists of lists of . . . ),
indexing them is inconvenient. The addition of cell arrays improves Octave’s ability
to handle heterogenous collections of objects. The list data type is still used in
a number of functions, but should be considered deprecated and not used in new
code.

Matlab’s structure array is a multidimensional indexed map object in which
each element of the map is an array of the same length, and each array element can
hold any other type of object.

Octave has had a structure type almost from the beginning (before Matlab
had anything comparable). It could be used to store arrays of objects (or lists) but
there was no automatic way to enforce all structure fields to have the same number
of elements.

In Octave, both of these new data types are currently limited to two dimensions,
but that restriction should be eliminated once Octave fully supports multidimen-
sional numeric arrays.

2.1.2 Variable argument lists

Early versions of Matlab offered no way to pass a variable number of arguments.
A function that needed to approximate this had to be defined using something like

function f (x1, x2, x3, x4, x5, x6, x7, x8, x9)
...

and then use nargin to check the number of arguments that were actually supplied.
Obviously, it is inconvenient to have to modify the function definition if you should
happen to need more than the maximum number of arguments allowed. Octave
fixed this problem by introducing a new syntax and some functions for passing a
variable number of arguments that was patterned after the C language. Later, when
Matlab was modified to include cell arrays, it was also changed to allow variable
argument lists to be passed as a special cell array object. Recently, Octave has
adopted the Matlab-compatible way of handling variable length argument lists
and deprecated the original method.

This is an example of the kind of trouble that can arise due to innovations
that Eaton described at DSC-2001. Even though a transition to a slightly different
method can be somewhat difficult, we now believe, given Octave’s strength as a
Matlab-compatible system, that in cases such as this it is better to support the
Matlab way of doing things and phase out the previous method5.

2.1.3 Subfunctions

Originally, Matlab only allowed functions to be defined in files, with one function
per file. With newer versions, it is possible to define several functions in one file.

5At least until Octave is the dominant system for interactive matrix computations.



Proceedings of DSC 2003 4

Only the first is visible outside the file, with the scope of the remaining subfunctions
limited to the file. For example, in a file containing

function fun ()
...

function sub1 ()
...

function sub2 ()
...

the functions sub1 and sub2 may only be called by each other or fun. Note that
there is no token to mark the end of a function—a new function keyword ends the
previous function definition and marks the beginning of a new subfunction.

Octave, which also allows functions to be defined on the command line and
includes an endfunction keyword to support this feature, now also supports sub-
functions, but only inside function files. We considered trying to support nesting
functions to an arbitrary depth

function fun ()
...
function sub1 ()
...
function sub2 ()
...

endfunction
endfunction

endfunction

but in the end decided that conflicts with the Matlab semantics and the extra
complexity were not worth the effort.

2.1.4 Function handles

In earlier versions of Octave and Matlab, the function feval could be used to call a
function by name (as a character string). Recent versions of Matlab allow functions
to be referenced using the syntax @function_name, which creates a function handle
object that references function_name using the lookup rules that apply at the
location where the function handle is created. This feature allows subfunctions to
be passed to feval.

Matlab function handles are also a multidimensional object. This is not really
necessary, as a collection of function handles could be stored in a cell array, and
Octave’s implementation currently allows only a scalar function handle object.

2.2 Other changes

A number of other changes have been made recently that enhance Octave’s capabil-
ities but have nothing to do with Matlab compatibility. Some of the more notable
additions are described below.

2.2.1 Missing values compatible with R

Octave can now represent missing numeric values in a way that is compatible with
R (using a specific NaN value with the low word set to the mysterious decimal value



Proceedings of DSC 2003 5

1954). Using this definition will make it easier for R and Octave to share data as we
will be able to pass matrices between systems without having to specifically check
for and handle missing values.

2.2.2 Improved differential equation solvers

We now have interfaces to three additional differential equation solvers:

• ODESSA (Leis and Kramer, 1988): ODE solver with sensitivity analysis based
on LSODE (Hindmarsh, 1983). ODESSA solves the problem

ẋ(t; p) = f(x(t), t; p) x(t = 0) = x0

and simultaneously computes the first order parametric sensitivities defined
by the additional set of differential equations

Ṡ(t) =
∂f

∂x
S(t) +

∂f

∂p
Sij(t = 0) =

{
1 if pj = xi(0)
0 otherwise

• DASPK2.0 (Brown, Hindmarsh, and Petzold, 1994): Newer version of DASSL
with a better method for computing a consistent initial condition. DASPK2.0
solves the problem

f(t, x(t), ẋ(t)) = 0 x(t = 0) = x0, ẋ(t = 0) = ẋ0

• DASRT (Brenan, Campbell, and Petzold, 1989): DAE solver with root finding
based on DASSL (Petzold, 1983). DASRT solves the same problem as DASPK2.0
but terminates the integration when any of the stopping conditions gi(x, t) =
0; i = 1, . . . , Ng is satisfied.

We now have two LSODE variants and three DASSL variants in Octave. It would
be much better to have only one of each, but we are currently relying on code from
external sources, and these have developed in a seemingly haphazard way, with
changes not folded back in to the original sources.

We would also like to use DASPK3.0 (Li and Petzold, 2003), which includes a
sensitivity analysis feature, but it is not yet clear whether it will have a license that
will allow it to be included with Octave.

2.2.3 Parallel processing

Parallel processing applications based on Matlab are nothing new, but none are
integrated with Matlab itself, and one of the primary stumbling blocks is that
many of the implementations require one license per process, which can quickly
become prohibitively expensive. Octave and other free software tools have a signif-
icant advantage here, as the in incremental cost to running N additional processes
is quite low.

A survey of past efforts for Matlab is available at http://supertech.lcs.
mit.edu/~cly/survey.html. This list is divided by method:

• Embarrassingly parallel—coarse granularity, usually giving you some way
to send sending jobs to remote systems for execution. Not usually an effective
way to split up linear algebra tasks, but a reasonable way to solve problems
that just require executing the same task many times (say for different pa-
rameter values).

http://supertech.lcs.mit.edu/~cly/survey.html
http://supertech.lcs.mit.edu/~cly/survey.html


Proceedings of DSC 2003 6

• Message passing (MPI6, PVM7)—MPI is message passing interface and is
one of the emerging “standards” for parallel computations. PVM is parallel
virtual machine and has been around longer than MPI.

• Backend support—typically provide replacement functions for things that
can be done in parallel. Some have you call qr_p instead of qr if you want
to do it in parallel. The most promising is probably Matlab*P, which uses
Matlab’s object-oriented features to do this more transparently.

• Compilers—some people have written Matlab compilers that attempt to
do automatic parallelization of Matlab code. Most of these efforts are several
years old now, and apparently not currently maintained. None of them are as
compatible with Matlab as Octave is now, so adding the features of one of
these experimental systems to Octave would have the advantage of providing
a more up-to-date language implementation along with the parallel tools in a
system that is widely available and actively maintained.

Octave will eventually have some combination of the above methods to support
parallel tasks. A few simple interfaces to MPI have been written that allow Octave
to use some basic MPI functionality, but it would be better to try to provide a more
complete interface to the standard and then provide the higher level functions in
Octave code. This task is probably not too difficult, but not trivial either, as the
public interface of the MPI library is relatively large.

The Matlab*P project seems active, and we might be able to use that if Octave
could support the Matlab way of doing object-oriented programming. The devel-
opment version of Matlab*P is distributed with no copyright notice, but the first
version was distributed with a “don’t redistribute without telling us” notice in a
README file.

2.2.4 An interface to R

Duncan Temple Lang has contributed code to allow Octave to call R functions, and
for R to call Octave functions. For example, the function call

ROctave_callR ("rnorm", 10)

in Octave will pass the value 10 (it could be any expression) to the R function rnorm
and return the result to Octave. Similarly, the code

x <- .Call ("R_OctaveCall", "syl", list (a, b, c));

uses the Octave function syl to solve the matrix equation AX +XB +C = 0 given
appropriate definitions of a, b, and c as R matrices.

More complex applications are also possible, for example with R calling an Oc-
tave procedure that requires a user-supplied function, which can be written in Oc-
tave or in R8.

This interface between R and Octave is a good start, but there are a few problems
that will need to be addressed before it is ready for serious use. Probably the
most important problem is that several global functions in R and Octave have the
same signature, which can lead to some trouble9. Also, the current implementation

6http://www-unix.mcs.anl.gov/mpi/mpich
7http://www.csm.ornl.gov/pvm/pvm_home.html
8If we provide a wrapper in Octave to call back to R using ROctave_callR though perhaps with

a little magic it will be possible to eliminate the need for the wrapper function.
9This problem may be partially fixed in the development version of R. See also Section 3.1.5.

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.csm.ornl.gov/pvm/pvm_home.html


Proceedings of DSC 2003 7

dynamically loads R (Octave) and passes copies of values to and from R (Octave),
which can be slow for large matrices. In the future, it may be possible to improve
performance by passing values as references instead. We will, however, still need to
make the data available in a suitable format, so unless Octave and R data formats
can be made compatible, some transformation will be required.

At this point, it is useful to be able to make these inter-interpreter calls, but
unless we are able to make it more efficient and less clumsy to use, it seems unlikely
that it will be widely used.

2.2.5 Improved signal handling to avoid resource leaks

Until recently, Octave handled signals by calling longjmp to jump directly from the
signal handler back to the beginning of the main event loop. On Unix-like systems,
this method works to handle interrupts immediately, but it is not guaranteed to
work on all systems, and with Octave’s reference counted memory management, it
could lead to severe memory leaks. To overcome these problems, the signal handler
no longer calls longjmp directly. Instead, it sets a global variable and returns.
This variable is then checked at a number of points throughout the code using the
following macro:

#define OCTAVE_QUIT \
do \
{ \
if (octave_interrupt_state) \
{ \
octave_interrupt_state = 0; \
octave_throw_interrupt_exception (); \

} \
} \

while (0)

If octave_interrupt_state is nonzero, a C++ exception is thrown. The exception
is caught at the bottom of the main event loop, the state of the interpreter is reset to
a sane state, and execution continues. The advantage of throwing a C++ exception
instead of using longjmp is that it automatically takes care of calling destructors for
any temporary objects that have been constructed up to the point of the interrupt.

This macro is now used in approximately 120 locations throughout the inter-
preter, primarily inside loops. Inserting most of the calls only took an hour or two.
A few more were added after the initial conversion.

This new method of handling interrupts is reasonably responsive for code that is
a part of Octave, and is much better for avoiding resource leaks for C++ objects if we
follow the relatively simple rule that class constructors are responsible for allocating
resources and class destructors are responsible for releasing those resources.

Unfortunately10, not all of Octave is written in C++, nor can all of the source
be modified to call OCTAVE_QUIT in all the necessary locations. Even when we have
access to the source code, it may be undesirable to modify it—we don’t want to
take on the maintenance of every piece of code that is used with Octave, and we
would like to be able to easily adopt new versions of external libraries as they are
available.

10Or not. . .



Proceedings of DSC 2003 8

{

octave_jmp_buf saved_context;

octave_save_current_context ((char *) saved_context);

if (octave_set_current_context)

{

octave_restore_current_context ((char *) saved_context)

octave_throw_interrupt_exception ();

}

else

{

octave_interrupt_immediately++;

9>>>>>>=>>>>>>;
1

call_to_foreign_code (); // Out of our control.

octave_interrupt_immediately--;

octave_restore_current_context ((char *) saved_context);

}

}

)
2

Figure 1: Octave’s new method of calling foreign code.

To make this method of signal handling work with foreign code, blocks of foreign
are wrapped as shown in Figure 1. The variable octave_interrupt_immediately
is used to tell the Octave’s interrupt signal handler whether it should interrupt im-
mediately. If octave_interrupt_immediately is nonzero, then the interrupt signal
handler should call siglongjmp to return to the location specified by saved_context.
We use octave_jmp_buf and octave_save_current_context instead of jmp_buf
and setjmp to hide the details of those functions to make it easier to handle poten-
tial portability problems.

A set of macros are available to allow us to avoid having to write this mess
everywhere it is needed. Instead, we use

BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; 1

call_to_foreign_function (); // Out of our control.

END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE; 2

which is much clearer and easier to type.
Fortunately, we only have to worry about these issues when the foreign code

could consume more than a few tenths of a second (we expect that should be good
enough for interactive interrupts). For functions that complete fast enough that it
should never matter that they are uninterruptible, we don’t need to bother with all
of this additional code.

2.2.6 Improved portability

Thanks to the efforts of Mumit Khan, Paul Kienzle, Per Persson and others, it is
now possible to build and run Octave with compilers other than GCC and on a wider
variety of systems, including Microsoft Windows and Apple Computer’s Mac OS X.
As more compilers begin to implement standard conforming C++ compilers, and as
GCC’s support for standard C++ has improved, Octave has become less dependent



Proceedings of DSC 2003 9

on GCC. Although GCC remains our preferred compiler on most platforms, it is
useful to be able to build and test Octave with vendor compilers.

Octave is now running reasonably well on Microsoft Windows systems using the
Cygwin toolkit11. It is also possible to build a mostly working version using the
MinGW12 toolkit (Cygwin tools for building, but generating a binary that doesn’t
require the Cygwin library to run). Not surprisingly, POSIX system call features
are not well supported with the MinGW version, and process creation (using fork
and exec) is not fully functional. Various binary packages of Octave for Windows
are available on the web.

The port to Apple’s Mac OS X was much simpler since the core of the system
is Unix based and GCC is the standard compiler. A binary package of Octave is
available as a part of the Fink13 project.

3 Future plans

3.1 Immediate future

Plans for the immediate Future (within the next year or so) include the following
items.

3.1.1 Multidimensional arrays

Octave should support multidimensional numerical arrays, at least as a container
object with a few basic numerical operations. Although it may eventually be useful
to adopt a convention for functions like svd to work on slices of multidimensional
arrays, this does not seem to be immediately necessary.

Along with support for multidimensional numerical arrays, Octave’s current cell
and structure arrays and function handle objects should also be extended to allow
multidimensional data.

3.1.2 Sparse matrices

Andy Adler has provided some basic sparse matrix capabilities for Octave based on
the SuperLU package from Netlib14. This code could become the basis for a built-in
sparse matrix type for Octave. The current version of Andy’s code is available as
a part of Octave Forge (see below for more information about the Octave Forge
project).

3.1.3 Optimization tools

A joint project with Doug Bates will result in an NLP solver that can be used in
both R and Octave. This project is still in the planning stages, but we currently
intend to implement an efficient SQP algorithm for dense problems by the end of
the year. We also plan to implement a robust interior-point QP solver.

11http://www.cygwin.com
12http://www.mingw.org
13http://fink.sourceforge.net
14http://www.netlib.org

http://www.cygwin.com
http://www.mingw.org
http://fink.sourceforge.net
http://www.netlib.org


Proceedings of DSC 2003 10

3.1.4 Global namespace cleanup

Octave’s internals currently have a number of global functions that are inconsis-
tently named and likely to conflict with the functions from other packages, should
they be linked together (as R and Octave are when using the ROctave package). For
example, both R (version 1.6.2 at least, though this seems to be fixed in the current
development sources) and Octave export functions with the following (C-linkage)
names:

extern void warning (const char *fmt, ...);
extern void error (const char *fmt, ...);

Because the signatures are the same, a crash does not immediately result if Octave
code calls the error function from R, but it will not do precisely what was intended
(Octave’s error function also performs some additional cleanup which is different
from what is required by R).

3.1.5 API definition

In addition to some attempt to avoid global name conflicts, Octave will need to
provide a stable, documented set of functions that can be used by external packages.
Currently, all internal functions are available for use by external packages and this is
a frequent source of trouble as Octave’s internals continue to evolve15. By providing
a stable interface for packages to use, we hope avoid most of these problems in the
future.

3.2 Longer term

In the longer term, we see the following projects as potentially useful improvements.

3.2.1 Package system

Paul Kienzle has been maintaining a collection of contributed functions and infor-
mation about Octave for several years. It is now available on the web at http:
//octave.sf.net. One of the original motivations for the project was to collect
functions that improved Octave’s capabilities, particularly in the area of Matlab-
compatibility. The external repository functions as a central repository for con-
tributed code, where it can be evaluated and, in some cases, merged with the core
Octave distribution.

Eventually, we hope to have a package system (perhaps similar to, or even
sharing code with, the one used by R). Once that happens, we will be able to move
some code out of the core Octave distribution and into external packages such as
the Octave Forge collection.

3.2.2 Specialized matrix types

For memory and computational efficiency, it would be useful to include banded,
triangular, symmetric, or other specialized matrix types. These should not be too
hard to add given Octave’s object-oriented structure, though we will probably need
some method to handle the explosion in the number of new functions for mixed-type

15Even though this may cause trouble from time to time, this is a feature we would like to
preserve, at least for wizards.

http://octave.sf.net
http://octave.sf.net


Proceedings of DSC 2003 11

operations that will need to be defined. Some clever use of templates may help here,
but I still see this problem as unsolved.

3.2.3 Improved graphics and GUI tools

Recently, Ole Jacob Hagen has started work on a new graphics engine for Octave
that aims to be compatible with Matlab’s Handle Graphics. This work is part
of the Zherlock16 project that aims to create data analysis software that will al-
low the user to access advanced methods in statistics, chemometrics and artificial
intelligence through an easy-to-use graphical user interface.

3.2.4 Multithreading

If Octave is to have programmable GUI features, it will probably need to have some
multithreading capability to allow the GUI to continue functioning while a long
calculation takes place. This modification will be a challenge given that the current
implementation relies on a number of global variables to maintain the state of the
interpreter.

4 Summary

In the two years since DSC-2001, Octave’s user group and the number of interesting
and useful contributions has grown significantly. A small but active group of users
participate regularly on the mailing lists, answering questions and contributing
enhancements and bug fixes. New contributors arrive on the scene regularly, and
we look forward to this trend continuing. The pessimism expressed two years ago
now seems unwarranted.

During the same time, we have been working toward improved compatibility
with Matlab while still keeping an eye on innovation. We are convinced that
Octave will continue to improve and attract a wider audience.

Acknowledgments

The authors gratefully acknowledge the financial support of the industrial members
of the Texas-Wisconsin Modeling and Control Consortium and NSF through grant
#CTS-0105360.

References

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. Elsevier Science Publishers,
New York, 1989.

P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Using Krylov methods in the
solution of large-scale differential-algebraic systems. SIAM Journal of Scientific
Computing, 15:1467–1488, 1994.

16http://www.zherlock.org

http://www.zherlock.org


Proceedings of DSC 2003 12

J. W. Eaton. Octave: Past, present and future. In K. Hornik and F. Leisch,
editors, Proceedings of the 2nd International Workshop on Distributed Statis-
tical Computing, March 15-17, 2001, Technische Universität Wien, Vienna,
Austria, 2001. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
Proceedings/. ISSN 1609-395X.

A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. S.
Stepleman, editor, Scientific Computing, pages 55–64, Amsterdam, 1983. North-
Holland.

J. R. Leis and M. A. Kramer. The simultaneous solution and sensitivity analysis
of systems described by ordinary differential equations. ACM Transactions on
Mathematical Software, 1988.

S. Li and L. R. Petzold. Software and algorithms for sensitivity analysis of large-
scale differential-algebraic systems. to appear, Journal of Computational and
Applied Mathematics, 2003. URL http://www.engineering.ucsb.edu/~cse.

L. R. Petzold. A description of DASSL: A differential-algebraic system solver. In
R. S. Stepleman, editor, Scientific Computing, pages 65–68, Amsterdam, 1983.
North-Holland.

J. B. Rawlings and J. G. Ekerdt. Chemical Reactor Analysis and Design Funda-
mentals. Nob Hill Publishing, Madison, WI, 2002.

Affiliation

John W. Eaton and James B. Rawlings
Department of Chemical and Biological Engineering
University of Wisconsin-Madison
Madison, WI 53706 USA

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.engineering.ucsb.edu/~cse

	Introduction
	Recent changes
	Changes for compatibility with Matlab
	Cell and structure arrays
	Variable argument lists
	Subfunctions
	Function handles

	Other changes
	Missing values compatible with R
	Improved differential equation solvers
	Parallel processing
	An interface to R
	Improved signal handling to avoid resource leaks
	Improved portability


	Future plans
	Immediate future
	Multidimensional arrays
	Sparse matrices
	Optimization tools
	Global namespace cleanup
	API definition

	Longer term
	Package system
	Specialized matrix types
	Improved graphics and GUI tools
	Multithreading


	Summary

