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Abstract

Microarray technology allows the measurement of expression levels of thou-
sands of genes simultaneously and is expected to contribute significantly to
advances in fundamental questions of biology and medicine. While microar-
rays monitor thousands of genes, there is a lot of evidence that only a few
underlying signature components of gene subsets account for nearly all of the
outcome variation. Here, methodology for revealing these predictive gene clus-
ters in microarray data is presented. For this task, we focus on supervised
algorithms, defined as clustering techniques which utilize external information
about the response variables for grouping the explanatory variables (genes). In
studies where external response variables are available, our approach is often
more effective than unsupervised techniques such as hierarchical clustering.

1 Introduction

Large-scale monitoring of gene expression by microarrays is considered to be the
most promising technique to improve medical diagnostics and functional genomics.
Given efficient statistical methods for exploiting the relevant information from large
gene expression datasets, an accurate classification of tumor subtypes may become
reality, allowing for specific therapies that maximize treatment efficacy and minimize
toxicity. Moreover, gene expression data are an important resource to reconstruct
gene regulatory networks, or more globally, to understand how the genome works.

Our goal is to reveal groups of genes which act together, for example in path-
ways, and are optimally predictive for a certain type of a disease. In other words,
we are searching for rules such as “if in average, gene 534, gene 837 and gene 235 are
overexpressed, as well as gene 2194, gene 1438, gene 931 and gene 694 are under-
expressed, this is typical for cancer subtype A”. These groups of genes can then be
used as signature components to accurately predict the phenotypes of new individ-
uals in medical diagnostics and to gain insights into biological and gene regulatory
processes. However, finding such groups is difficult: we are facing computational
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problems due to the sheer amount of predictor variables (genes) which are present,
and statistical difficulties due to the “small n, large p” phenomenon.

To tackle the search for co-regulated genes, unsupervised clustering algorithms
are widely applied: mostly hierarchical clustering algorithms, but also k-means
clustering, self-organizing maps and principal components, among other tools, are
used. All these methods cluster genes according to unsupervised similarity mea-
sures. Since our goal is to reveal groups of co-regulated predictor variables with
strong association to the response variable, we focus on supervised clustering algo-
rithms. They are defined as grouping of predictor variables, controlled by external
(supervised) information about the response variables, for example the tumor sub-
types that are associated with the arrays. Because of the combinatorial complexity,
we rely on a greedy clustering strategy, based on sequentially improving an empirical
objective function that measures the strength for cancer type discrimination.

2 Methods

2.1 The partitioning problem

Given a thoroughly preprocessed gene expression profile X ∈ IRp, which is stan-
dardized to zero mean and unit variance, as well as its associated response variable
Y ∈ {0, 1}, coding for two different phenotypes, we assume that the conditional
probability for class membership is given by

P [Y = 1|X] = f
(
XC1 , XC2 , . . . , XCq

)
, (1)

where f(·) is a nonlinear function, C1, . . . , Cq with q � p are gene clusters and
XCi

∈ IR are their representative values, defined as XCi
= 1

|Ci|
∑

g∈Ci
sgXg with

sg ∈ {−1, 1}. This assumption reflects the fact that not all p genes individually,
but rather a few underlying marker components of gene subsets determine most
of the outcome variation. Even by using the simple arithmetic mean as a group
value as we do, finding the optimal partition of thousands of genes into a few
clusters is highly nontrivial and the design of a procedure that reveals the best
partition from equation (1) is too ambitious. Thus, we suggest computationally
intensive procedures that approximately solve the equality in (1) and which yield
good empirical results.

2.2 A generic strategy for supervised clustering

Here, we present a heuristic for finding gene clusters, each consisting of a few genes
whose mean expression profile is optimally predictive for tissue discrimination. Be-
cause of the combinatorial complexity due to the presence of thousands of genes,
we rely on a greedy strategy. This is:

1) We start from scratch and grow the clusters incrementally by adding one gene
after the other. In each step, try all genes and add the one which improves
the cluster most, according to a well-defined clustering criterion S. Repeat
the growing until S worsens.

2) Subsequent stepwise pruning helps to remove spurious genes that were incor-
rectly added to the cluster. In each step, try all clustered genes and exclude
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the one whose removal improves the cluster most, according to the clustering
criterion S. Repeat the pruning until S worsens.

3) If the clustering criterion S cannot be improved any longer by adding or
removing genes, the current cluster is terminated and a new cluster is started.
From now on, the current and previous clusters remain unchanged.

The very important difference between our and most other clustering algorithms
is, that we do not augment (or shorten) the cluster by the gene that suits best (or
least) into the current cluster in terms of an unsupervised similarity measure, but
base our strategy for supervised clustering of genes on adding (or removing) the
gene that improves the differential expression of the current cluster most. Thus,
our clustering criterion S is a (possibly penalized) goodness-of-fit measure, which
is used to find groups of genes that separate two different tissue types as accurately
as possible.

2.3 Wilma – a first implementation

Our first implementation of a supervised clustering algorithm, called Wilma, follows
exactly the generic strategy described above and was published under the heading
“Supervised Clustering of Genes”, see Dettling and Bühlmann (2002). The first
priority clustering criterion S that measures the strength of differential expression
for the two tissue types is the statistic of Wilcoxon’s test for two unpaired samples.
The criterion is refined with a second priority margin function M , measuring the
size of the gap (in standardized gene expression units) between the two response
classes. Hence the name Wilma, as an acronym for the Wilcoxon and margin
criteria. In Wilma, if a cluster is terminated, all the clustered genes are removed
from the expression matrix before the search for the next cluster can begin.

This implementation of supervised clustering yields very good empirical results
in terms of the predictive potential, the stability and the relevance of the gene
groups it identifies. As an example, figure 1 impressively shows how well the mean
expression of the first two clusters separate the 3 response classes of a dataset de-
scribing the gene expression of 62 patients suffering from one of the 3 prevalent
lymphoid malignancies from Alizadeh et al. (2000). However, there are some limi-
tations. Because the clusters are disjoint, this first implementation cannot capture
genes which possibly operate in multiple pathways. Next, each cluster is (up to
the disjointness to the former clusters) built independently of all the others. So, it
might happen that the clusters are not sufficiently orthogonal. Then, the clustering
criterion was non-penalized which might lead to overfitting, although we did not
observe this in practice, probably because of the wiggly and very rigorous margin
criterion. Moreover, the second priority margin criterion is highly non-robust and
results in very hard supervision. The latter has been especially successful in “easy”
classification problems, but we expect that some milder form of supervision may
lead to better empirical results in problems in difficult, inhomogeneous classification
problems with substantial Bayes risk.

2.4 Pelora – a second implementation

Our more refined second proposal of a supervised clustering algorithm is called
Pelora, as it is based on penalized logistic regression analysis. It is described in
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Figure 1: 2-dimensional projection of the lymphoma dataset from Alizadeh et al.
(2000) into the space of the first two supervised gene clusters. The data describe the
gene expression of 62 patients suffering from one of the 3 prevalent adult lymphoid
malignancies.

Dettling and Bühlmann (2004), addresses all the limitations of the first implementa-
tion and still follows exactly the generic strategy described in section 2.2. It differs
in the criterion S the clustering is based on. We work with the penalized negative
log-likelihood function

S = −
n∑

i=1

(yi · log pθ(xi) + (1− yi) · log(1− pθ(xi))) + λP (2)

= −`(θ) + λP,

where yi ∈ {0, 1} are the class labels and xi are the cluster-dependent predictor
variables for experiments i = 1, . . . , n. Furthermore, pθ(x) = Pθ[Y = 1|X = x]
are estimates of the conditional class probabilities from a parametric model, λ is
a tuning parameter that controls the amount of penalization and P is the penalty
term. We rely on the the `2-penalty, that is, we penalize by θT θ, the dot product
of the model parameters.

Our parametric model for estimation of the conditional class probabilities was
chosen to be penalized logistic regression analysis (Le Cessie and Van Houwelingen,
1990; Eilers et al., 2001). The classical logistic model is given by

log
(

pθ(xi)
1− pθ(xi)

)
=

p∑
j=0

θjxij , for all i = 1, . . . , n.
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The idea of penalized logistic regression is now to estimate the parameter vector θ
by a penalized maximum likelihood principle. We minimize

Q(θ) = −`(θ) + λP (3)

with respect to the parameter vector θ. As in equation (2), λ is the tuning param-
eter that controls the amount of penalization and P is the `2-Penalty θT θ. Taking
derivatives in equation (3) leads to (p + 1) nonlinear equations, whose solution
needs to be approximated. We do this iteratively by Newton-Raphson stepping.
Instead of iterating until convergence, we restrict to 2 full iterations. This saves
much computing time and already yields an accurate solution, which from a prac-
tical viewpoint can be judged as precise enough. We observed that the clustering
decisions did hardly ever change if we ran the algorithm until convergence, instead
of doing only 2 iterations.

In summary, the forward step in Pelora works as follows. Assume that clusters
C1, . . . , Cp with predictor variables x1, . . . , xp are already found. We try to augment
Cp and thus repeat for all genes j:

a) construct candidate clusters Cj
p and corresponding predictor variables xj

p.

b) by Newton-Raphson stepping, estimate θj and use it to compute the negative
penalized log-likelihood criterion Sj . The gene j∗ = arg minj Sj is the winner.
If Sj∗ is smaller than the best criterion value from the previous round, gene
j∗ enters the clusters and Cp as well as xp are updated, before the search of
the next gene is started.

Full details about technical issues and about the clustering procedure can be found
in Dettling and Bühlmann (2004).

2.5 Multiclass and continuous response problems

Our clustering procedures Wilma and Pelora can also deal with multiclass prob-
lems, which are handled by formulating them as multiple binary problems. This
approach has been successful in a variety of problems, and with microarray data,
according to our experience from Dettling and Bühlmann (2003), it often works
better than simultaneous multiclass versions, especially when variable selection is
involved. Various approaches for reduction of multiclass to multiple binary prob-
lems exist, see Allwein et al. (2000). We already observed very good empirical
results with the most simple solution, the one-against-all approach, which we also
used for the lymphoma dataset in this paper.

Pelora, our second implementation of supervised clustering, can easily be adapted
to continuous response variables. Instead of the penalized log-likelihood criterion
S from equation (2), we recommend the use of the `2-penalized sum of squared
residuals.

S = −
n∑

i=1

(yi − ŷi)2 + λP

This relies on model based fitted response values ŷi, which we recommend to com-
pute from ridge regression (Hoerl and Kennard, 1970; Ghosh, 2003).
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3 Numerical results

We evaluated our supervised clustering algorithms broadly on several different
datasets, all describing the gene expression of cancer patients. The full results
can be found in our original papers, see Dettling and Bühlmann (2002, 2004). The
output of the supervised algorithms was very promising throughout, since the clus-
ter expression xC always discriminated the cancer classes very clearly on the training
data, as in figure 1. The average cluster size was (depending on the dataset) be-
tween 5-7 genes for Wilma and between 15-30 genes for Pelora. The number of
clusters can be set according to previous knowledge, can be chosen data-adaptively
by cross validation or can be estimated by techniques such as proposed in Dudoit
and Fridlyand (2002) or Tibshirani et al. (2000).

10-fold cv Leukemia Estrogen Nodal Colon Prostate Lymphoma
Wilma 2.78% 4.08% 36.79% 11.29% 10.78% 0.00%
Pelora 4.17% 2.04% 14.28% 12.90% 7.84% 0.00%
1-NN 1.29% 12.24% 34.69% 19.35% 11.76% 0.00%
SVM 2.78% 6.12% 28.57% 20.97% 8.82% 1.61%

Table 1: Error rates from 10-fold cross validation with 5 supervised clusters from
Wilma and Pelora as predictors in a 1-nearest-neighbor classifier, and with the
best 100 single genes according to Wilcoxon’s test statistic as input for a 1-nearest-
neighbors and support vector machines.

To see whether the output of Wilma and Pelora could successfully reveal func-
tionally relevant groups of genes with good predictive potential, we report the clas-
sification results for 5 binary datasets, the famous AML/ALL leukemia dataset of
Golub et al. (1999), the two breast cancer datasets with estrogen and nodal response
of West et al. (2001), the colon cancer dataset of Alon et al. (1999), the prostate
cancer dataset of Singh et al. (2002), and a 3-class problem, the lymphoma dataset
of Alizadeh et al. (2000). For further information about the availability of these
data and our preprocessing, see Dettling and Bühlmann (2002, 2004).

Because, except for the leukemia data, no genuine test sets are available, we
base our empirical study of the predictive potential on 10-fold cross validation.
This means that we partition the data into 10 blocks, set aside one block and use
the remaining 9 to carry out cluster building and classifier fitting. We then honestly
predict the class labels of the left-out block and cycle through all blocks. The test-
set error can be determined by calculating the fraction of misclassified observations.

In table 1, the results for our supervised clustering procedures Wilma and Pelora
were obtained with q = 5 clusters (varying on each block) as predictor variables in
a 1-nearest-neighbor classifier. The penalty parameter λ was optimally chosen and
varying across the datasets. We compare the results to classification with single
genes. For this, we selected the 100 most predictive genes according to Wilcoxon’s
test statistic on each block. We used them as predictor values for the 1-nearest-
neighbor method. Note that the number of genes which are used in the q = 5
supervised clusters from Pelora is around 100, too. Moreover, we compare to a sup-
port vector machine with linear kernel, a state-of-the-art machine learning method
for tumor classification.

The results are in favor of our supervised clustering procedures. Pelora seems
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to have an edge over Wilma and as expected, the difference is the biggest on the
difficult nodal response problem. Classification based on single genes sometimes
can, but often cannot keep up with Wilma and Pelora. We never observed that our
clusters totally failed or yielded much worse results than single genes. We take this
as evidence that our supervised clustering procedures really identify predictive and
functionally relevant groups of genes.

4 Conclusions

We have suggested methodology for supervised clustering of genes from microarray
experiments. Our procedures are potentially useful in the context of medical diag-
nostics, as they identify groups of interacting genes which can be used as signatures
for tumor classification. At the same time, the clusters may give insight into gene
regulation and function.

Our goal in supervised gene clustering is to find gene groups whose average
expression renders the discrimination of different tissue types as simple as possible.
We solve this by building the clusters incrementally with a stepwise forward and
backward strategy. In empirical studies, this yielded excellent classification results,
superior to state-of-the-art methods with single genes.
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