
Proceedings of the 3rd International Workshop

on Distributed Statistical Computing (DSC 2003)
March 20–22, Vienna, Austria ISSN 1609-395X

Kurt Hornik, Friedrich Leisch & Achim Zeileis (eds.)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Converting a Large R Package to S4
Classes and Methods

Douglas M. Bates Saikat DebRoy

Abstract

The nlme package for fitting and examining linear and nonlinear mixed-
effects models in R is a required package and also one of the largest R packages,
based on source package size. In the first phase of a project to extend the
capabilities of the nlme package to include generalized linear mixed models
(glmm’s), we reimplemented linear mixed-effects (lme) models using S4 classes
and methods, as described in John Chambers’ book“Programming with Data”
and as implemented in the methods package for R. Our general goals for this
phase are to incorporate new theoretical and computational developments for
the lme model and to provide a faster, cleaner implementation of lme fits in
R while including hooks for later extensions to the glmm model and the nlme
model. In particular, we use our reStruct (random-effects structure) class in
iterative PQL fits for glmm’s, based on Brian Ripley’s function glmmPQL from
the MASS package.

As described in “Programming with Data”, classes, slots and inheritance
relationships must be declared explicitly when using the methods package.
Although such formal declarations require package authors to be more disci-
plined than when using informal S3 classes, they provide assurance that each
object in a class has the required slots and that the names and classes of data
in the slots are consistent. This is important to us because we are trying to
achieve both efficiency and flexibility. We provide flexibility by defining many
classes and methods and by using multiple-argument signatures in method
declarations. We achieve efficiency by implementing many methods in C code
using the .Call interface and through liberal use of GET_SLOT and SET_SLOT

within the C code.
We feel that the new implementation is much cleaner and easier to un-

derstand than the previous implementation, due in large part to the more
extensive use of classes and methods. It is definitely faster and can handle
larger problems than the previous implementation.

New URL: http://www.R-project.org/conferences/DSC-2003/

http://www.R-project.org/conferences/DSC-2003/

Proceedings of DSC 2003 2

1 Introduction

The nlme package (Pinheiro and Bates, 2000) for fitting and examining linear and
nonlinear mixed-effects models is a large R package. It consists of more than 500 R
functions, 3500 lines of C code, and 40 data sets plus documentation and examples.
The reason that there are so many functions in a package that is devoted to fitting
just one general type of statistical model is to provide flexibility in specifying and
examining the models. We also want to fit mixed-effects models efficiently.

To organize the large number of functions applied to different types of objects we
created many classes of objects representing, for example, grouped data (grouped-
Data), linear mixed-effects model structures (lmeStruct), nonlinear mixed-effects
model structures, random-effects structures (reStruct), positive-definite parameter-
ized matrices (pdMat), correlation structures (corStruct), variance functions (var-
Func) and many different kinds of fitted models or summaries or plots derived from
fitted models. Most of the 500 functions are methods for different classes of objects.

The computational methods described in Pinheiro and Bates (2000, ch. 2,7) for
efficiently evaluating and profiling the log-likelihood or log-restricted-likelihood of
a linear or nonlinear mixed-effects model with multiple, nested levels of random
effects are quite formidable. Model matrices corresponding to the fixed-effects or
to the random-effects terms in the statistical model are combined and decomposed
repeatedly during the iterative optimization of the objective function to determine
the parameter estimates. To achieve a reasonable level of efficiency in fitting models
we coded the compute-intensive parts of the calculations in C.

We have begun a project to extend the capabilities of nlme to fit generalized lin-
ear mixed models (Raudenbush and Bryk, 2002, ch. 10), beginning with the method
implemented by Brian Ripley in the glmmPQL function from the MASS package but
also implementing estimation methods based on Laplacian and adaptive Gauss-
Hermite approximations to the integral of the conditional density of the random
effects.

In the first phase of this project we have reimplemented the data structures and
computational algorithms for linear mixed models as S4 classes and methods. Our
objectives for this reimplementation are:

• To encapsulate the underlying structures for linear mixed models in such a
way that they can be extended to generalized linear mixed models and to
nonlinear mixed models.

• To incorporate new theoretical and computational developments for the lme
model. We have derived the analytic gradient of the profiled log-likelihood (or
log-restricted likelihood) of a linear mixed model (DebRoy and Bates, 2003a,b)
and have related the gradient results to an ECME (expectation conditional
maximization either) optimization step. The analytic gradient allows for faster
and, more importantly, more stable optimization.

• To convert the numerical linear algebra calls from Linpack and BLAS-1 calls
to Lapack (Anderson, Bai, Bischof, Demmel, Dongarra, Croz, Greenbaum,
Hammaring, McKenney, Ostrouchov, and Sorensen, 1992) and BLAS levels
1, 2, and 3. Lapack provides state-of-the-art algorithms and can provide a
substantial performance boost when the ATLAS (Automatically Tuned Linear
Algebra Software) implementations of the BLAS and some Lapack routines
are available.

Proceedings of DSC 2003 3

• To switch all calls of C code to the .Call interface so that entire R objects
can be passed to and from the C code. This also allows direct access to the
slots of S4 classed objects from within C code.

• To monitor the number of copies of objects that are created, especially those
created within iterative algorithms. In §5 we discuss an example of a model
fit to 375,000 observations on 135,000 subjects grouped into 3722 groups. The
model matrices for the fixed effects can have as many as 40 or 50 columns,
or about 150 MB for each copy of the model matrix and information derived
from it. We need at least three arrays of this size to keep track of all the
information we use. We do not want to create more than that if we can avoid
doing so.

1.1 S3 versus S4 classes and methods

Object-oriented programming is a powerful tool for organizing the representation
of information (classes) and the actions that are applied to these representations
(methods). A system of classes and methods for the S language was introduced in
Chambers and Hastie (1992). We will call this the S3 class system, to distinguish
it from the S4 class system described in Chambers (1998) and implemented for R
in the methods package. Unlike object-oriented languages such as Java and C++
where methods are associated with a class definition, both the S3 and the S4 systems
associate methods with the combination of a generic function and the classes of one
or more of the arguments to that function.

S3 classes are informal: the class of an object is determined by its class attribute,
which should consist of one or more character strings, and methods are found by
combining the name of the generic function with the class of the first argument to
the function. If a function having this combined name is on the search path, it is
assumed to be the appropriate method. Classes and their contents are not formally
defined in the S3 system - at best there is a “gentleman’s agreement” that objects
in a class will have certain structure with certain component names.

By contrast, S4 classes must be defined explicitly. The number of slots in objects
of the class, and the names and classes of the slots, are established at the time of
class definition. During computation with objects from the class they are validated
against the definition. As in many other object-oriented systems, an S4 class can be
declared to inherit from another class so S4 classes can be arranged in a hierarchy.

S4 also requires formal declarations of methods, unlike the informal system of
using function names to identify a method in S3. An S4 method is declared by a call
to setMethod giving the name of the generic and the “signature” of the arguments.
The signature identifies the classes of one or more named arguments to the generic
function. Special meta-classes named ANY and missing can be used in the signature.

S4 generic functions can be declared by a call to setGeneric or they can be
automatically created by declaring a method for an existing function, in which case
the function becomes generic and the current definition becomes the default method.

2 Package conversion: Creating S4 classes

The principle generic functions for mixed-effects models and the methods associated
with them were already defined in version 3.1 of the nlme package. Although these
generics and methods would be modified to some extent during the conversion to

Proceedings of DSC 2003 4

S4 classes and methods, we could initially assume these would stay as they are
and concentrate instead on determining what classes should be defined and how we
should define them.

We could use the informal set of classes from the S3 version as a guide when
formulating the S4 classes. We found, however, that we frequently reconsidered the
structure of the classes during the conversion and usually ended up adding more
slots to the classes than had been present in the informal, S3 version.

Consider, for example, the pdMat class of parameterized, positive definite, sym-
metric matrices. It is a virtual class, i.e. a class for which no objects can be created,
but which is used to create a family of extended or derived classes. The matrices rep-
resented by objects that inherit from this class are determined by a non-redundant,
unconstrained vector of parameters. In some parameterizations the dimensions of
the matrix can be determined from the length of the parameter vector but in others,
such as pdIdent, representing multiples of the identity, or pdCompSymm, representing
matrices with compound symmetry, the parameter vector has a fixed length and the
number of columns in the matrix must be stored separately. We decided to add an
Ncol slot to all the pdMat classes and did so by declaring it in the virtual pdMat
class. In fact, the pdMat class declares six slots that are automatically present in
all classes inheriting from the pdMat class

setClass("pdMat", # parameterized positive-definite matrices

representation(form="formula", # a model-matrix formula

Names="character", # column (and row) names

param="numeric", # parameter vector

Ncol="integer", # number of columns

factor="matrix", # factor of the pos-def matrix

logDet="numeric" # logarithm of the absolute value

of the determinant of the factor (i.e. half

the logarithm of the determinant of the matrix)

),

prototype(form=formula(NULL),

Names=character(0),

param=numeric(0),

Ncol=as.integer(0),

factor=matrix(numeric(0),0,0),

logDet=numeric(0))

)

After this definition most of the class definitions for other pdMat classes are
trivial.

setClass("pdSymm", "pdMat") # general symmetric pd matrices

setClass("pdScalar", "pdSymm") # special case of positive scalars

setClass("pdLogChol", "pdSymm") # default parameterization

setClass("pdNatural", "pdSymm") # log sd and Fisher’s z of correlation

setClass("pdMatrixLog", "pdSymm")# matrix logarithm parameterization

setClass("pdDiag", "pdMat") # diagonal pd matrices

setClass("pdIdent", "pdMat") # positive multiple of the identity

setClass("pdCompSymm", "pdMat") # compound symmetric pd matrices

It may seem odd or verbose to define all these classes that are trivial extensions
of the pdMat and pdSymm virtual classes. The point of doing this is that, although

Proceedings of DSC 2003 5

the representations of these different classes have the same form, there are many
operations that are specific to the classes and we can use specific methods for these
operations.

Increasing the number of slots may be an inevitable consequence of revising the
package (we tend to add capabilities more frequently than we remove them) but it
may also be related to the fact that S4 classes must be declared explicitly and hence
we consider the components or slots of the classes and the relationships between
the classes more carefully.

3 Calling C functions with .Call

The .Call interface, through which a programmer can pass raw R objects to C code
and receive raw R objects from the C code, has been part of R for several years.
It was inspired by the .Call interface for S described in Chambers (1998). Sev-
eral C macros for working with S4 classed objects, including GET_SLOT, SET_SLOT,
MAKE_CLASS and NEW, all described in Chambers (1998) are are now available in R,
or will be in R 1.7.0. (Note that the macro NEW_OBJECT is preferred to NEW when
writing code for R only. These two macros have the same effect but NEW_OBJECT is
less likely to conflict with other definitions.)

The combination of the formal classes of S4, the .Call interface, and these
macros allows a programmer to manipulate S4 classed objects in C code nearly as
easily as in R code. A common idiom is to have an S4 method call C code through
the .Call interface. In the C code the values of slots are extracted with GET_SLOT
and either modified in place or used to create slots for new objects. Such new objects
are created and populated by calls to MAKE_CLASS, NEW_OBJECT, and SET_SLOT.

Because the C code is called from a method, the programmer can be confident
of the classes of the objects passed in the call and the classes of the slots of those
objects. Much of the checking of classes or modes and possible coercion of modes
that is common in C code called from R can be bypassed.

We found that we would initially write methods in R then translate them into C
if warranted. The nature of our calculations, frequently involving multiple decom-
positions and manipulations of sections of arrays, was such that the calculations
could be expressed in R but not very cleanly. Once we had the R version working
satisfactorily we could translate into C the parts that were critical for performance
or were awkward to write in R. An important advantage of this mode of develop-
ment is that we could use the same slots in the C version as in the R version and
create the same types of objects to be returned.

We feel that defining S4 classes and methods in R then translating parts of
method definitions to C functions called through .Call is an extremely effective
mode for numerical computation. Programmers who have experience working in
C++ or Java may initially find it more convenient to define classes and methods
in the compiled language and perhaps define a parallel series of classes in R. (We
did exactly that when creating an early version of the Matrix package for R.) We
encourage such programmers to try instead this method of defining only one set of
classes, the S4 classes in R, and use these classes in both the interpreted language
and the compiled language.

Proceedings of DSC 2003 6

3.1 Using replacement methods

The .Call interface is a powerful tool and, like many powerful tools, must be
used carefully if you are to avoid hurting yourself with it. The programmer must
be aware that the arguments are not copied when they are passed through .Call
even though the semantics of R function calls require that arguments must not be
modified by a function call. If you are to modify the value of an R object passed
as an argument you must somehow copy its storage, usually by duplicating it or
coercing it to another mode, before making any changes. Failure to do so can result
in bugs that are extremely difficult to diagnose.

Duplicating or coercing R objects will usually require that the result be protected
from the garbage collector by a call to the PROTECT macro. The effect of all calls to
PROTECT must be undone by calling UNPROTECT before returning from the C function.
Keeping track of what has been protected can sometimes be tedious.

There is one exception to the “don’t modify the arguments” rule: a replacement
function or a replacement method is allowed to modify its first argument. Because
the class of the result is the same as the class of the first argument it is common
to use this argument as the return value, after suitable modification of its contents.
We found that we used replacement methods more frequently in our code than we
had first expected. We tended to think in steps of creating an object then modifying
it according to the values of other objects.

For example, a linear mixed-effects model is represented by an reStruct object.
The core part of the code to fit such a model is

re <- reStruct(fixed = fixed, random = random,

data = eval(mCall, parent.frame()),

REML = method != "ML")

EMsteps(re) <- controlvals

LMEoptimize(re) <- controlvals

where we construct the reStruct object, perform some number of EM updates on
it then perform general nonlinear optimization on it.

4 Use of Lapack and ATLAS

Linpack and Eispack routines have been used for numerical linear algebra in R since
its inception and are part of the R API. The Linpack and Eispack packages have
been largely superseded by Lapack (Anderson et al., 1992) which provides, in some
cases, better algorithms and, in nearly all cases, more effective implementations
of the algorithms. Some of the effectiveness of the implementations, especially for
large arrays, comes from more extensive use of the Basic Linear Algebra Subroutines
(BLAS). As the name implies, these are basic routines for doing operations like mul-
tiplying two matrices or replacing y by ax+y. Even in sophisticated linear algebra
algorithms, the majority of the numerical computation takes place in these basic
operations, hence it is worthwhile devoting considerable effort to optimizing these
routines. ATLAS (Automatically Tuned Linear Algebra Software) is a collection
of highly optimized BLAS routines that can be compiled and optimized for differ-
ent architectures. The combination of Lapack and ATLAS can give a considerable
performance boost to algorithms that use numerical linear algebra extensively.

The R Core Development Group (primarily Brian Ripley) has been migrating R
from Linpack and Eispack to Lapack. Beginning with R-1.7.0 the double precision

Proceedings of DSC 2003 7

Lapack routines and some of the double precision complex Lapack routines will be
part of the R API. We converted all the linear algebra in the lme calculations to
Lapack, with gratifying results as described in the next section.

5 Timing results

Rodriguez and Goldman (1995) simulated 100 sets of 2445 binary responses grouped
into 1558 families in 161 communities and fit generalized linear mixed models with
two levels of random effects to these. The implementation of glmmPQL in the new
version of the package is roughly 5 times as fast on these fits as the previous version
that used repeated calls to lme.

We also fit a linear mixed-effects model to 378047 mathematics scores of 134713
students on the Texas Assessment of Academic Skills (TAAS). The data were all
the test scores of students in grades 3 to 8 in Dallas, Texas during 1994 to 2000.
The particular model that we fit had a fixed-effects vector of length 47, resulting
in very large model matrices. A fit with the previous version of the lme function
took 993 seconds of user time (1093 seconds elapsed time) on a 2.0 GHz Pentium-4
machine with 1.0 GB of PC-2700 memory running Debian GNU/Linux. The new
version of lme took 221 seconds user time (345 seconds elapsed time) on the same
machine.

6 Conclusions

We feel that we have met our objectives in reimplementing the lme part of the nlme
package using S4 classes and methods. Although the performance boost from using
Lapack and ATLAS is gratifying, we feel that the biggest gain is in making the code
much cleaner and easier to understand and in exposing interfaces that can be used
by models that extend the linear mixed-effects model.

Code clarity is enhanced by the fact that S4 classes and the .Call interface
allow programmers to work with the same class definitions in R code and in C code.
We have also found that liberal use of replacement functions and methods allows
us to maintain control of the number of copies of objects being created.

Acknowledgements

This work is supported by U.S. Army Medical Research and Materiel Command
under Contract No. DAMD17-02-C-0119. The views, opinions and/or findings
contained in this report are those of the authors and should not be construed as an
official Department of the Army position, policy or decision unless so designated by
other documentation.

References

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammaring, A. McKenney, S. Ostrouchov, and D. Sorensen. Lapack
Users’ Guide. SIAM, Philadelphia, 1992.

Proceedings of DSC 2003 8

John M. Chambers. Programming with Data. Springer, New York, 1998. ISBN
0-387-98503-4.

John M. Chambers and Trevor J. Hastie. Statistical Models in S. Chapman & Hall,
London, 1992. ISBN 0-412-83040-X.

Saikat DebRoy and Douglas M. Bates. Computational methods for multiple level
linear mixed-effects models. Technical Report 1076, Department of Statistics,
University of Wisconsin-Madison, 2003a.

Saikat DebRoy and Douglas M. Bates. Computational methods for single level
linear mixed-effects models. Technical Report 1073, Department of Statistics,
University of Wisconsin-Madison, 2003b.

José C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in S and S-PLUS.
Springer, 2000. ISBN 0-387-98957-9.

Stephen W. Raudenbush and Anthony S. Bryk. Hierarchical Linear Models: Ap-
plications and Data Analysis Methods. Sage, second edition, 2002. ISBN 0-7619-
1904-X.

Germán Rodriguez and Noreen Goldman. An assessment of estimation procedures
for multilevel models with binary responses. Journal of the Royal Statistical
Society, Series A, General, 158:73–89, 1995.

Affiliation

Douglas M. Bates, Saikat DebRoy
Department of Statistics
University of Wisconsin – Madison
E-mail: bates@stat.wisc.edu, saikat@stat.wisc.edu

mailto:bates@stat.wisc.edu
mailto:saikat@stat.wisc.edu

	Introduction
	S3 versus S4 classes and methods

	Package conversion: Creating S4 classes
	Calling C functions with .Call
	Using replacement methods

	Use of Lapack and ATLAS
	Timing results
	Conclusions

