DSC 2003 Working Papers
(Draft Versions)

http: / /www.ci.tuwien.ac.at/Conferences/DSC-2003/

Rasp : A Package For Spatial Statistics

Barry Rowlingson;]
Adrian Baddeley!
Rolf Turner?

Peter Diggle®

Abstract

This paper describes the development of a new R package for spatial data
and statistics. We review existing packages that deal with spatial information
and comment on how they handle the basic data. Our goal is then to construct
a unifying spatial data structure that can form a base for any spatial statistics
libraries.

We build on our experience with earlier packages — spatstat [1] and
splancs [2] — to produce a library with extensive data-manipulation and sta-
tistical functionality. An object-oriented design is used throughout to abstract
functionality from any implementation specifics, but we take care to present
the user with simple functions that have sensible defaults. The paper is as
much a technical document on package design as it is a story of how such a
package evolves from the ideas of the authors.

The basic functionality deals with coordinates and associated attributes
of each coordinate. The coordinates may be Cartesian spatial locations in up
to three dimensions, together with an optional temporal location to handle
space-time data. Data structures and methods for polygonal regions are also
implemented.

Currently we have functions for spatial point-pattern analysis derived from
spatstat and splancs. The geostatistical functionality of the geoR library
can be easily integrated, as well as other libraries currently in the CRAN.

*Lancaster University, Lancaster, UK
TUWA, Perth, Australia

TUniversity of New Brunswick, Canada
§Lancaster University, Lancaster, UK

DSC 2003 Working Papers

Spatial Statistics

Spatial Statistics covers any branch of data analysis that uses locations. Sim-
ple data could be locations of trees in a forest together with their species and
height, populations of different regions within a country, measurements of soil
pH sampled over a field, or the positions of cell nuclei observed under a mi-
croscope. More complex data could involve a number of coordinates for each
entity, such as tracking data from a number of individually identified animals.
In this example we could also have the time of each tracking point, giving an
example of a space-time dataset.

Cressie’s book Statistics for Spatial Data [3] is a good reference on spatial
statistics. It discusses most of what is included in our code, except for some of
the functions that are on the leading edge of statistical methodology. Other
spatial statistics books are available.

R/S Spatial Statistics libraries

There are many libraries for R/S that deal with spatial data. Some are full
packages with data manipulation, display, and analysis routines. Others are
single-purpose codes, often a simple R/S wrapper round some C or Fortran
subroutines. This seems to be because most R and S development occurs in
the academic field where leading-edge analytical routines are of interest, and
so we end up with small packages that do technical things with little common
basic functionality. One of the original goals of splancs was to provide those
basic routines. Now with new functionality in R we feel a new spatial base is
required.

Spatial statistics for R has been well-featured in the R-newsletter, for
example by Ripley [4] and Bivand [5], where many packages that handle spatial
data are reviewed.

splancs and spatstat

The splancs package was probably one of the first spatial data packages
written for the S language. It was initially developed under Splus 2.3, and
has received only minor upgrades and extensions since then. The port to R
was done by Roger Bivand.

spatstat was written for the display and analysis of point-pattern data.
It deals with points and the polygonal regions in which they are found. It was
written for a more recent version of the S language than splancs, and so uses
some of the more modern features, such as objects and formula notation.

It stores points in ppp objects. Since the polygonal area, or ‘window’,
is such an intrinsic part of a realisation of a point pattern, there must be a
specification of the region in the ppp object. The implementation also allows
a single ‘mark’ variable to be associated with each point.

Spatial data in splancs is restricted to 2-dimensional spatial data, al-
though there are a few functions that deal with space-time data. The package
uses 2-column matrices for storing points, and any temporal data should be
stored in a separate vector. More complex data structures were not imple-
mented in Splus at the time.

DSC 2003 Working Papers

Analysis routines in splancs concentrated on applications in environmen-
tal epidemiology, and included nearest-neighbour and second-order point pat-
tern statistics, as well as model-fitting for “raised incidence” around a specified
point. The spatstat analytical focus appears to be more toward development
of cutting-edge point-process modelling, but includes many of the simpler de-
scriptive tools that make the package much more rounded.

As an illustration we will examine one of the nearest-neighbour calculations
as a comparison between packages. This will compute the distribution of
nearest-neighbour distances from one set of points to another.

spatstat

First we generate a ppp object using the spatstat function for a uniform
Poisson process. Then we assign marks of 0 and 1 to the data at random.
After computing the distribution of the distances from type-0 points to the
nearest type-1 point we plot the value for the uncorrected, ‘raw’ estimate:

> pp <- runifpoispp(100)

> pp$marks <- factor(sample(0:1, pp$n, replace=TRUE))
> Gx <- Gcross(pp,0,1)

> plot (Gxr,Gxraw)

Several things are happening here that are invisible to the user at first.
spatstat tries hard to give default values to arguments wherever possible,
simplifying the calling sequence. The Gecross() call needs a window in which
to do edge corrections for some of the estimators, and since we don’t supply
one it uses a default of a unit square centred on (0.5, 0.5). Also it has computed
the distribution using a range of distances to span the data. This distance
range can be supplied but a default is computed otherwise.

The returned object is a data frame with the distance values as the $r
component and several other columns including different estimators of the
distribution. It also includes the theoretical value for Poisson processes with
the same intensity.

splancs

To illustrate the same calculation in splancs we will use the same data by
extracting it from the ppp object. We will construct two matrices for the two
different sets of points, and use the distance values returned by Gecross() as
the domain of the calculation of the distribution.

> xy0 <- cbind(ppx,ppy) [pp$marks==0,]
> xyl <- cbind(ppx,ppy) [pp$marks==1,]
> F10 <- Fhat(xy1l,xy0,Gx$r)

> lines(Gx$r,F10)

Note that the splancs function is called Fhat (), and the ordering of the
definition of the points is reversed compared to spatstat. The distance scale
must be specified since splancs will not supply a default. The Fhat () function
only returns the ‘raw’ estimate of the distribution, and so does not require a
window for edge corrections. The return value is a vector of the same length
as Gx$r.

DSC 2003 Working Papers

Rasp Design Thoughts

Initial development of Rasp took place in Perth during August 2002 by Adrian
Baddeley, Rolf Turner and Barry Rowlingson. It soon became clear that there
was a fundamental difference between what the authors were trying to achieve.
Adrian and Rolf were still thinking of a package for spatial point-pattern anal-
ysis, whereas Barry had in mind an initial lower-level codebase on which more
spatial statistical functionality could be built. Certainly the spatstat ppp
data structure was too closely tied to the point-pattern methodology to be of
much use in other areas, for example in geostatistics, where there may be no
meaningful polygonal region. There was also considerable discussion over ter-
minology since the information associated to a point in point-pattern analysis
is known as a “mark”, whereas such information in a modelling context could
accurately be called a covariate. Similarly the region in which a point-pattern
exists is known as the ‘window’, but this is too specific a term for a general
polygonal region in space.

After some considerable discussion and much mutual education into spatial
statistics and software engineering, a short design for how the code should
work was drawn up.

Data for Spatial Statistics

There seem to be as many ways of storing spatial point data as there are
packages for manipulating them. What structure should we choose for Rasp?
The simple two-column vector? The data frame with $x and $y components?
Instead we chose none of these. We do not enforce any structure on the data
fed to Rasp routines — instead we make the condition that the object must
implement a method, sp.coords, that returns the coordinates. It is then left
up to the object to return the coordinates as it sees fit.

To illustrate this we define a spatial data frame, and show how sp.coords
works in this context. Suppose we have some quantities sampled at a num-
ber of locations. This information is read into a data frame in the usual
way. We then create a spatial data frame by giving it coordinates using the
sp.coords<- method:

> water <- read.table("water.dat")
> sp.coords(water) <- cbind(water$x,water$y)

This has modified the object’s class. It now displays with the coordinates
added to the data frame:

> class(water)
[1] "spatial.data.frame" "data.frame"

> water

coords X y z1 z2 z3
1 (25.7307, 1.20804) 25.73072 1.208041 -13 0.25666607 0.1330937
2 (90.0111, 33.6031) 90.01106 33.603051 18 -1.89270100 1.4347811
3 (96.8213, 66.4864) 96.82130 66.486440 12 -1.59967112 -2.4597535
4 (91.881, 24.9425) 91.88104 24.942455 -5 1.73899873 2.6009416
5 (95.8498, 18.917) 95.84980 18.916989 -12 -0.92256835 -0.6764757
6 (16.0386, 31.5343) 16.03858 31.534267 -5 1.07900015 -1.1096188

DSC 2003 Working Papers

7 (81.864, 84.2214) 81.86399 84.2213556 3 -3.21402785 2.5181521
8 (17.2057, 79.7311) 17.20568 79.731139 -18 0.59890535 4.5298231
9 (71.3799, 94.1818) 71.37992 94.181840 -2 0.13862134 0.5545065
10 (23.2602, 52.8181) 23.26015 52.818109 -3 0.01097744 1.7003302

Now that we have created this object, its behaviour will be slightly differ-
ent from a normal data frame. For example the plot method will display a
dot-map of the locations. To get the usual plot method for the data frame
requires plot(as.data.frame(water)). Subscripting rows and columns from
the object returns another spatial data frame with changed dimensions. Other
features of data frames, such as dim() or names() work as expected, and you
can even use it in a glm function with the data= parameter and put the names
in the formula.

But what have we gained from this? Firstly, the coordinates are freed
from the restriction of being called x or y, and these names are now free to be
used in the data frame for other purposes. Also, you may have data that has
several coordinates associated with each data point (such as a birth location
and a death location), and you can assign each one to sp.coords when you
want to work with that as the location. But perhaps the biggest win with this
scheme is that you can feed this object to a Rasp function and it will get the
coordinates.

This mechanism can be extended to almost any class of object. Suppose
you have data that forms a ragged list, with different numbers of values for
each data point. We could implement a spatial list object, and as long as an
sp.coords method is implemented for that class then all the Rasp functionality
will be available to it. There is no need to coerce it to a spatial point type.

A default method for sp.coords will mop up cases where an object with no
class is passed, such as two-column matrices or lists with no other geographic
data apart from a $x and $y component. This way the user can either adopt
the simple route of keeping spatial data in simple vectors and matrices, or
build other objects such as data frames and store the spatial data for each
item within it.

Point-pattern Analysis Routines

To illustrate the thinking behind the Rasp point-pattern analysis routines we
use the same nearest-neighbour calculation as before.

Firstly we demonstrate a function that enables the computation to be
done in a manner similar to the splancs way of doing things. This takes two
objects from which coordinates are extracted (using sp.coords()) and also
needs a window and distance scale. We take the distance scale from the earlier
example.

> Gxy2 <- G.biv2(xy0,xyl,rectangle(),r=Gx$r)

Although we have re-used the xy0 and xy1 objects from the splancs ex-
ample, these could be any objects that return meaningful values with the
sp.coords() function, such as spatial data frames.

If all the locations are stored in a single spatial data frame with mark
variables, it is more convenient to use the G.biv() function, and use the

DSC 2003 Working Papers

marks to specify the two classes of points. Here we construct a spatial data
frame from the old ppp object and use a formula to specify from which points
we are computing the nearest-neighbours:

> pps <- spatial.data.frame(data.frame(Type=pp$marks),
coords=cbind (ppx,ppy))
> Gsx <~ G.biv(pps, Type==0,r=Gx$r,window=rectangle())

Note that this computes nearest-neighbour distances for type-0 points to
all non-type-0 points (in this case the type-1 points). If the data has more
complex markings, then two formulae can be given to specify the partition of
the points. The following example is exactly equivalent to the previous one if
there are only type-0 and type-1 events in the data:

> Gsx <~ G.biv(pps, Type==0, Type==1,r=Gx$r,window=rectangle())

In fact these two arguments can be almost any expression that evaluates
to a logical vector of the same length as the number of points in the first
argument. Here we generate a random partitioning of the points into type-0
and type-1 points and compute the nearest-neighbour distribution again:

> npart <- sample(0:1,npts(pps),replace=T)
> Gpl <- G.biv(pps,npart==0,r=Gx$r,window=rectangle())

We have tried in Rasp to make the analysis routines as flexible as possible.
Thanks to the object-oriented way of getting coordinates from objects they
can work on simple matrices and lists or more complex data structures.

Higher Dimensions and Space-time Data

We can extend our 2-dimensional framework to accommodate further spatial
dimensions and a temporal dimension. We do this by adding an extra argu-
ment to the sp.coords() function to specify which axes we are dealing with.
For example we can set up an object to have 2-dimensional spatial coordinates
and a single time coordinate like so:

> sp.coords(foo,’xyt’) <- cbind(x,y,t)

When a function wishes to get the spatial coordinates for this object it can
do sp.coords(foo), and to get the temporal locations it can call the function
as sp.coords(foo,’t’). For three-dimensional data we use ‘xyz’, and can set
or get individual components:

> sp.coords(foo,’xyz’) <- cbind(x,y,z)
> hist(sp.coords(foo,’z’))

This scheme means that functions can get the dimensionality of data that
they require from the supplied objects without having to worry about the
internal arrangement of the objects.

DSC 2003 Working Papers

Functionality - Current

Rasp currently has support for the following functions — most of which have
been taken from spatstat and splancs:

e Spatial Data — Create spatial data frames, point-pattern objects, trans-
lations, rotations, shifts etc. Create spatial windows as rectangles, poly-
gons, binary raster grid masks.

e Graphics — Display points with correct aspect ratio. Display spatial
windows.

e Point-pattern analysis — F-, G-, and J- nearest-neighbour analyses.
Ripley’s K-function, inhomogeneous K-function. Edge corrections.

e Point-pattern model-fitting — maximum pseudo-likelihood fitting for
a wide range of models. Include trends and edge corrections.

Functionality - Near Future

Some functions from spatstat and splancs should be easily transportable to
the new framework. Most of the code is ready, and it just needs converting
to use the new object-oriented methods.

e Space-Time Clustering — Tests and displays for space-time cluster
detection. Monte-Carlo and analytical tests. Diagnostic plots.

e Point-pattern generation — assorted process models available includ-
ing Poisson, Matérn inhibition, Neyman-Scott. Metropolis-Hastings al-
gorithm for Strauss processes.

e Raised Incidence Modelling — isotropic and directional modelling of
cases and controls of disease as a function of distance from a specified
point or points

Functionality - Not-so-near Future: Spatial
GLMs and Geostatistics

Whereas point-pattern analysis treats the locations of the points as being
of intrinsic interest, geostatistics treats them as fixed and is interested in
modelling measurements taken at the points, perhaps for interpolating them
over a region.

A great deal of code for this is already available in the geoR [6] and geoRglm
[7] packages. These use their own data structures for spatial data where the
coordinates, measurements, and covariates are stored in a list structure. There
appears to be no clean interface to access to the various parts of this structure.

Using spatial data frames, it should be possible to provide a formula-
oriented interface to these libraries. This will make their functions more anal-
ogous to the standard Im() or glm() functions, but with extra arguments to
specify the covariance structure or other model parameters.

DSC 2003 Working Papers

Conclusion

Hopefully we have started work on code that can form the base of any spatial
data analysis package.

The library is released under the GPL and is available from the Sourceforge

web site via http://www.sourceforge.net/projects/r-asp and we encour-
age other developers of spatial packages to download and help develop the
code.

References

1]

w

EREIINET)

=)

Adrian Baddeley and Rolf Turner. spatstat: An Splus/R library for spatial
statistics. http://www.maths.uwa.edu.au/"adrian/spatstat.html.

Barry Rowlingson and Peter Diggle. Splancs: spatial point-pattern anal-
ysis code in splus. http://www.maths.lancs.ac.uk/Software/Splancs.

N. A. C. Cressie. Statistics for spatial data. Wiley, 1993.
Brian D. Ripley. Spatial statistics in R. R News, 1(2):14-15, June 2001.
Roger Bivand. More on spatial data. R News, 1(3):13-17, September 2001.

Paulo Ribeiro and Peter Diggle. geoR, a package for geostatistical data
analysis using the R software. http://wuw.est.ufpr.br/geoR/.

Ole Christensen and Paolo Ribeiro. geoRglm: Soft-
ware for generalised linear spatial models using R.
http://www.maths.lancs.ac.uk/ christen/geoRglm/.

Acknowledgements

Barry Rowlingson would like to thank Adrian Baddeley for providing the
funding to visit Perth to work on Rasp in August 2002.

http://www.sourceforge.net/projects/r-asp

