DSC 2003 Working Papers
(Draft Versions)

http: //www. ci.tuwien.ac.at/Conferences/DSC-2003/

Quality Assurance for Graphics in R

Paul Murrell & Kurt Hornik

Abstract

An important part of software development involves testing the reliability
of the software. R has good tools for checking that the software runs without
catastrophic failure, but provides less support for checking that the software
produces the correct output, particularly for graphics code. This paper dis-
cusses the sort of testing that would be desirable, several ways that this testing
could be performed, and introduces some early attempts at providing tools for
performing such testing.

1 Introduction

This article is concerned with the quality of graphics software related to the R
language and environment for statistical computing and graphics[5].

The quality of software involves many different characteristics, such as reliability,
efficiency, usability and so on. For this article, we will focus on the reliability aspect
of software: whether the software is error-free and whether the software produces
correct results.

1.1 Measuring Software Quality:
QA, QC and Regression Tests
1

There are two important concepts involved in measuring the quality of software".
Quality Control (QC), or testing, involves running the software to make sure that
it does not produce errors (crash), and to make sure that it produces the correct
result. QC is concerned with the detection of problems (bugs).
A specific form of testing, called regression testing, involves checking that a
change in the software has not caused a change in the output of the software. In
this sort of testing, a set of control output is created prior to making a change to

1Defining and measuring quality is an area rich in terminology; the definitions in this article
are based on [4], [7], [6]

DSC 2003 Working Papers 2

the software, and this is compared to a set of test output created after the software
has been changed.

Testing that the software is producing correct output will be referred to as
validation. As in regression testing, we have two sets of output, test and control,
but we have the additional constraint that the control output has been verified to
be correct. In this case, we will refer to the control output as model output.

Quality Assurance (QA) is concerned with the quality of the process that pro-
duces the software. This involves establishing and enforcing standards and proce-
dures for software development. QA is concerned with the prevention of bugs.

1.2 QA and QC in R

There are a number of QC tools and QA procedures for R[3].

As part of the standard documentation for R functions, it is possible to provide
example code to demonstrate the correct usage of the function. In a “source” distri-
bution of R, it is possible to run all of this example code, for all functions, via the
(terminal) command make check. This provides a test that the examples all run
without producing a crash. This command also performs some regression tests to
check that certain known numerical results are produced correctly.

A similar command, R CMD check is available for running tests on add-on pack-
ages for R. This also performs checks on the existence and accuracy of documenta-
tion, and on its consistency with the R code.

In terms of QA, add-on packages must successfully pass the R CMD check tests
before they are made available on the main distribution site?. Also, changes by
the core developers of R must (at least) pass make check-devel tests (a more
stringent set of tests than make check) before they are incorporated into the official
development version.

1.3 QC for Graphics in R

Some of the example code that is run by make check and R CMD check produces
PostScript output. This means that some of the graphics code within R is being
tested to make sure that it does not produce a crash, but there are several ways in
which this testing is inadequate.

In order to understand some of the problems with this testing, it is necessary
to look at the software involved with producing and viewing R graphics output
(see Figure 1). The central piece of software is R’s graphics engine — a body of C
code that is distributed with R. There is R code and C code, both as part of the R
distribution and written by users as extensions to R, which calls the graphics engine
code. This might be referred to as “high-level” graphics code. There are a number
of graphics devices, written in C code, which represent different output formats for
graphics (e.g., PostScript, X11, PDF, ...); the graphics engine calls this code to
produce output. Finally, there is third-party software which is required to view the
different output formats. For example, ghostview may be used to view PostScript
output; printer drivers and core X11 and Windows display code could be grouped
in here too.

%http://cran.r-project.org/

http://cran.r-project.org/

DSC 2003 Working Papers 3

[High-level Grqphics]

[Graphics Engine]

[Grqphics Devices]

[Third Party Graphics Software]

Figure 1: The structure of software associated with graphics output in R.

With this structure in mind, it is more correct to say that the current testing
tools check that the high-level graphics code, the graphics engine, and the PostScript
device run without crashing (for the example code). Some of the inadequacies of
this testing are:

e There is no check that the output produced is correct.

e The code for all devices other than the PostScript device is not even checked
to see whether it crashes.

e There is no check that the output works with third-party software. Ultimately,
we require that the image that the user actually sees is correct.

This paper discusses some possible solutions to these problems.

2 Quality Control Tools for Graphics

As mentioned, R already has tools for checking that graphics code does not crash
(even if these tools are not used widely enough yet). What is still required are
tools to check whether graphics output has changed (regression tests) and whether
graphics output is actually correct.

DSC 2003 Working Papers 4

2.1 Text-based versus Bitmap Output Formats

These tools need to perform two main functions: produce output (both control
output and test output) and compare sets of output.

For performing comparisons, we will use the diff utility which which can be
assumed on all supported platforms according to the R Coding Standards[1].

For producing output, we will consider both text-based and bitmap formats
because neither output format on its own will satisfy all of the testing requirements.

Bitmap output is ideal for producing output which is as close as possible to what
the user actually sees. It is also possible to produce bitmap output from almost all
graphics devices so that all of the graphics code can be tested. Another advantage
is that control and test output can be combined via an xor operation to produce a
viewable representation of differences in output.

The downsides of bitmap output are that it has a limited resolution, produces
relatively large files (especially at higher resolutions), and is very sensitive to dif-
ferences in software and even hardware setup (i.e., the (version of the) third-party
software used to produce the bitmap and the platform the software is running on).
Another way of saying this is that the price we must pay for getting closer to what
the user sees is a loss of control over the output produced (because we are going
through third-party software over which we have no control). Because we are testing
for identical files, any variability in output which is not due to our software changes
completely compromises the testing process.

Text-based output is only possible for certain graphics devices, but it retains
very high resolution, creates smaller files and is highly cross-platform. One other
disadvantage with using text-based output for testing is that there are instances
where the text-based output can be changed deliberately without affecting what the
user sees (e.g., a change in the software for the PostScript driver which is designed
only to improve the efficiency of PostScript files, or reduce their size).

2.2 Validation of Graphics Output

For the purposes of validation, there are two important issues. First of all, model
output must not only be generated, but also verified as correct by some “expert”
observer. The second issue is that the model output must be distributable — that
is, we must be able to generate model output centrally then provide it to all users
with the R distribution. This means that it must be both portable across platforms
and not prohibitively large. Finally, a canonical set of model output must be able
to be maintained by the core developers; that is, there must be one set of output
which is the official set and this must be only modified or added to by an individual
who is willing to vouch for the correctness of the change.

A text-based output format is the best choice in this case. Bitmap formats do
not satisfy the portability requirement®. Also, a full set of model bitmaps for all
devices at a reasonable resolution would be several hundred megabytes of files.

A text-based format restricts the number of devices we can provide model output
for, but because we must create verified model output, which is time-consuming,
and because the set of model output cannot be ridiculously large, we are forced

31t is possible to produce portable bitmaps in the sense that they can be sensibly transferred
between systems. The problem is that it is not possible to guarantee that another system can
produce exactly the same bitmap because of differences in (or even lack of) third party software.

DSC 2003 Working Papers 5

to consider some sort of compromise like this in the amount of model output we
provide.

Finally, text-based model output is convenient for incorporating into the existing
official repository of the R distribution, which is maintained using the cvs version
management tool.

In summary, for the purposes of providing model graphics output we cannot
realistically achieve all of the desirable features outlined at the end of Section 1.3.
We can provide model output to validate graphics output for a limited number of
devices using a text-based output format.

2.3 Device-Independent Regression Tests for Graphics

For the simpler task of a general regression test — comparing output before a change
with output after a change — we have more flexibility to achieve the goals set out
at the end of Section 1.3.

It is assumed that this sort of testing takes place on a single machine (i.e., there
are neither cross-platform nor distribution issues). Furthermore, we are able to
ignore the strict “correctness” of output and just focus on whether change occurs in
the output. This means that we are able to consider options which involve producing
much larger amounts of output.

In this case, bitmap output is preferred. This allows us to test output for
(almost) all devices and we are able to test what the user sees.

In summary, at the expense of dropping the strict requirement that output is
tested for correctness, we are able to test more of the graphics code and test closer
to what the user sees by using a bitmap output format.

2.4 Unit Tests

As mentioned in Section 1.2, R already has useful tools for automatically running
tests based on the example code in the documentation for R functions and objects.
These tests already provide checks that a lot of R’s graphics code runs without
crashing. With the addition of tools to generate control output and model output,
we can extend the available tools to include regression tests and validation tests of
output. However, there remains an important step in making these tools effective:
it is vitally important that the authors of documentation include example code for
each graphical feature.

It is impossible to generate tests that will run all of the graphics code for all
possible user input, but there is a serious danger of whole sections of graphics code
never being tested because an example is never written to make use of that code.
A good general principle to follow is always to add example code whenever a new
feature is implemented. In the language of Extreme Programming][2], this is known
as writing unit tests.

Another good general principle is to write example code whenever a bug is fixed
— this will provide a check that the bug never resurfaces in the future.

DSC 2003 Working Papers 6

3 Some Usage Scenarios

In this section we will consider the needs of various types of people who might write
R graphics code.

3.1 Developers

Core R developers and authors of add-on packages will make use of both regression
tests and validation tests. They will also be responsible for the generation of model
output. There are two main scenarios:

developing new features: The main testing-related task here is to produce model
output for any new features so that any new code is included in future testing.

bug fixing: The main weapon here is the regression test. The aim of a bug fix is
usually to solve a specific problem, without adversely affecting other features
which are working correctly. At the completion of the bug fix, it is probably
a good idea to add a new piece of model output which can be used to ensure
that the bug remains fixed after future code changes.

3.2 Patch Contributors

Users who contribute patches may want to check that a patch does not adversely
affect the normal performance of a function. An example is the modifications sug-
gested by Marc Schwartz for the barplot function. One criterion for including the
suggestions in the main R version of barplot is that all current examples work
exactly as before. This could either be conducted as a regression test or as a vali-
dation test (or both), but is focused on a particular subset of the graphics code (as
opposed to entire suites of graphics code that developers work with).

Ideally, patch contributors would also contribute example code for testing new
features and/or bug fixes.

3.3 Normal Users

The main use of testing for normal users is to perform a validation test on a new
installation to check that the installation has succeeded. This should just be part
of the standard installation checking procedure.

4 An Example

In December 2002, a fix was made to the PDF device driver (part of the graphics
device code). The fix involved correcting the initialisation of graphical parameters
on PDF devices so differences in output were expected, but regression testing was
still useful to check that the fix was having an effect in appropriate cases, and no
effect elsewhere.

Control bitmap output was generated prior to the fix and test output was gener-
ated after the fix. Each set of output consisted of several hundred bitmap files. Each
pair of bitmap files were then compared using the diff utility to detect changes.

DSC 2003 Working Papers 7

text(...) examples text(...) examples
«ISO-accents» — @kt <~ <~ «ISO-accents»: — @t} <~ <
[eTranais, cestraie: R[gles, Libertd, Egaltd, Fraternitd. . o fran ais, cestfare: RE gles, Libertd, Egaltd, Fraternitd...
letz no chli z it tsch: (noch ein bi chen Z rcher deutsch) = etz no chii z it tsch: (noch ein bi chen Z rcher deutsch) .
B= () "Xy . B= X)Xy
expression(hat(beta) == (X"t * X)N{~1} * X"t *y) expression(hat(beta) == (X"t * X)*{~1} * X"t * y)
. © 4
e o
x=32 . x=32
2n 2n
. © -
o
o
3
i < 4
4 « the textis CENTERED. (%) = (6,2) by default ~ « thetextis CENTERED (xy) = (6,2) by default
. <$QLLen/Boncm - JUSTIFIED at (2,1) by ‘adj = ¢(0,0)' . AF.LLEWBDHOm - JUSTIFIED at (2,1) by ‘adj = ¢(0,0)’
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
1:10 1:10
Ris GNU ', but not fi ... Ris GNU*, but not fi ...

Figure 2: Control output (left) and test output (right) for detecting changes in
output due to a fix in R’s PDF driver.

Without automated testing tools, it is still possible to manually view different
sets of output to try to detect changes. One example that was detected in the
PDF driver fix demonstrates the futility and inaccuracy of such a manual approach;
Figure 2 shows control and test output which differ in only two (important) pixels*

5 Summary

There is clearly a need for improvement in the tools available for checking graphics
output from R code.

There are two main tasks that developers and users of R might want to perform:
trying to detect changes in output and trying to determine whether output is correct.

We have considered two output formats for performing these tasks and neither
satisfies all of the requirements for both tasks. The first task is best addressed by
producing bitmap output and the second is best addressed using text-based output.

Tools are being developed for these tasks and information about an R package
containing early versions of these tools is given in the Appendix.

4The difference is in the bar over the x in the formula for Z.

DSC 2003 Working Papers 8

References

[1]
2]

3]

Writing R extensions. http://cran.r-project.org/doc/manuals/R-exts.pdf.

Kent Beck. FEatreme Programming FExplained: Embrace Change. Addison-
Wesley, 2000.

Kurt Hornik. Tools and strategies for managing software library repositories.
In Statistics in an Era of Technological Change, Proceedings of the 2002 Joint
Statistical Meetings, pages 1490-1493, 2002.

Rick Hower. Software QA and testing frequently-asked-questions.
http://www.softwareqatest.com/qatfaql.html.

Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299-314, 1996.

Capers Jones. Software Quality: Analysis and Guidelines for Success. Interna-
tional Thomson Computer Press, 1997.

G. Gordon Schulmeyer and James 1. McManus, editors. Handbook of Software
Quality Assurance. Prentice Hall, third edition edition, 1999.

graphicsQC-internal 9

Appendix: The graphicsQC Package

Ultimately, graphics testing tools of the sort described in this article will be in-
corporated into the standard QC tools distributed with R. While they are being
developed, early versions are being made available as an add-on package called
graphicsQC. This section provides a description of the functions that this package
provides.

The package is currently available from
http://www.stat.auckland.ac.nz/ paul/R/graphicsQC_0.1.tar.gz.

graphicsQC-internal Internal graphicsQC Functions

Description

Internal graphicsQC functions.

graphicsQC Quality Control Tools for Graphics

Description

These functions provide routines for producing a set of model graphical output
for specified functions, testing graphics output against the model output, and
removing test and possibly model output files.

Usage

model.graphics(funs = NULL, package = NULL, names=NULL,
width = 600, height = 600,
device = postscript,
format = "pbm",
model.loc = ".",
verbose = FALSE,
reset.rng = TRUE,
L)

test.graphics(funs = NULL, package = NULL, names=NULL, omit=NULL,
width = 600, height = 600,
device = postscript, format = "pbm",
model.loc = ".", test.loc = model.loc,
verbose = FALSE, quiet = FALSE,
reset.rng = TRUE,
.2)

clean.graphics(funs = NULL, package = NULL, names = NULL,

graphicsQC

Arguments

funs

package

names

omit

width
height

device

format

model.loc
test.loc
verbose
quiet

testonly

reset.rng

10

width = 600, height = 600,

device = postscript, format = "pbm",
model.loc = ".", test.loc = model.loc,
verbose = FALSE, testonly = TRUE)

A character vector specifying the names of functions to pro-
duce test graphical output for.

The name of a package — all functions in the package will be
tested. Only one of funs or package can be specified.

A character vector specifying the names to use as part of the
filenames for the test output. This defaults to the function
names. If specified, it must be the same length as the funs
argument.

A character vector or list. If a character vector then this
specifies functions to omit. If a list then character elements
specify entire functions to omit and named numeric elements
specify examples within a function to omit. See the examples
below.

The width of the final test output (in pixels).
The height of the final test output (in pixels).

The device to use to produce the initial test output. Valid
values are: "postscript", "pdf", and "x11".

The format for the final test output. Valid values depend
on the device — some possibilities are: "pbm" (monochrome
portable bitmap file format) for postscript, pdf and x11 de-
vices; "ps" (postscript format) for the postscript and pdf de-
vice.

The directory in which to look for the model output.
The directory in which to create the test output.

If TRUE, print out progress messages.

If TRUE, do not print out a final result.

If TRUE, remove only test output (i.e., do not remove model
output).

If TRUE, reset the random number generator and random seed
before running each example. This will ensure that differences
from examples that randomly-generate data will not show up.
It is useful to set this to FALSE if you want to detect examples
of this kind.

Additional arguments to the device.

graphicsQC 11

Details

The model output is initially produced using the specified device, then converted
to a final model output (as specified by the format argument).

The test output is initially produced using the specified device, then converted
to a final test output (as specified by the format argument).

The test output is compared, per final output file, with the corresponding model
output. If a difference is found, an image of the difference is produced (for "bmp"
format at least).

For each function, the number of final output files, the width, height, device,
and format must be the same for test and model output before the comparison
will proceed.

It is possible to compare the output from functions with different names by
specifying the names argument. This overrides the naming of output files, which
is based on the function name otherwise.

Value

model.graphics is useful for its side-effect, which is to create an initial output
file per function using the device output format (if applicable) plus a final output
file per page of initial output, per function.

test.graphics produces a list containing a description of the differences de-
tected. The names of the elements give the names of the functions which had
examples that differed and the element values are numeric vectors indicating
which examples differed. See the examples below.

WARNING

Function names which start with non-alphanumeric characters (e.g., [, %, @, $,
...), or contain <- are omitted).

Examples

model.graphics("barplot", model.loc=tempdir())

diffs <- test.graphics("barplot", model.loc=tempdir(), reset.rng=FALSE)
list(barplot=1:2) as at version 1.6.1

diffs

Should report no differences

test.graphics("barplot", omit=diffs, model.loc=tempdir())

Tidy up

clean.graphics("barplot", model.loc=tempdir())

	Introduction
	Measuring Software Quality: QA, QC and Regression Tests
	QA and QC in R
	QC for Graphics in R

	Quality Control Tools for Graphics
	Text-based versus Bitmap Output Formats
	Validation of Graphics Output
	Device-Independent Regression Tests for Graphics
	Unit Tests

	Some Usage Scenarios
	Developers
	Patch Contributors
	Normal Users

	An Example
	Summary
	graphicsQC-internal
	graphicsQC

