
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

SciViews:

an object-oriented abstraction

layer to design GUIs on top

of various calculation kernels

Philippe Grosjean

phgrosjean@sciviews.org

Abstract

SciViews aims to provide a unique, polymorph object-oriented interface
(called “Plug”) to different data analysis software like R, Octave, Scilab, Mat-
lab, Splus, Ox, Mathematica,. . . It is thus possible to develop (Graphical) User
Interfaces independently to the calculation kernel and adapt them easily to
other systems. Moreover, the same GUI can possibly access several kernels si-
multaneously. A working prototype is developed in Visual Basic for Windows,
but other implementations of this concept are possible. A plug to connect R
is provided. Other plugs are in various stages of achievement. Several clients
are also in development, including SciViews compatible clients for office pro-
grams (Excel and Word) and a versatile GUI with menus, toolbars, docking
windows, a complete IDE and an integrated reporting system for generating
rich-formatted texts with graphs called “Insider”.

1 Introduction

Free data analysis software like R [1] (see http://www.R-project.org/), Octave
[2] (see http://www.octave.org/) or Scilab (see http://www.rocq.inria.fr/
scilab/) offer a command line interface (CLI). CLI has proven to be a flexible
and efficient way for power users to interact with the calculation kernel. However,
there is a steady demand [3] for a more intuitive graphical user interface (GUI) for
some users, mainly occasional ones. Most commercial software like Splus, SPSS,
SAS, Matlab, Mathematica, . . . propose feature-rich GUIs.

There are several difficulties in building a GUI for a data analysis software
originally designed to be used through a CLI. Some are technical, other ones are

http://www.R-project.org/
http://www.octave.org/
http://www.rocq.inria.fr/scilab/
http://www.rocq.inria.fr/scilab/


DSC 2003 Working Papers 2

conceptual problems. Major technical issues with CLI-designed software relate to
the main loop (or event loop). With a CLI, command submission is synchronous: no
interaction with the interface is allowed during calculation. Since a GUI is usually
event-driven, and possibly interacts with the user or with other programs at any
time (for instance, to redraw windows when they are resized or moved), it is not
acceptable to freeze the UI completely during calculation.

For conceptual issues, the kind of GUI (spreadsheet, notebook, IDE-like, . . . )
has a major influence on the way the user interacts with the calculation kernel. The
look-and-feel, and also extra features provided by the GUI can also range from ex-
tremely useful helping tools to annoying and useless gadgets. It seems that the way
the GUI actually drives the user, and especially rather inexperienced statisticians
can have a significant impact on the analyses. If the user interface is extremely easy
to use, for instance, providing a dialog box with default values and an ‘OK’ button,
there are chances that most inexperienced users run meaningless analysis. This is
because such an interface does not require understanding of underlying calculations
to produce “results”. On the contrary, an UI requiring a stepwise constructive
elaboration of the analysis, like S language keyed at the command line is by far less
prone to such a side-effect. Moreover, the command history associated with the CLI
allows easy recording and replaying of the session, a critical feature for repetitive
tasks or for teaching (because it eases verification of student’s works). This raises
the question whether an intuitive and easy to use GUI is even desirable for data
analysis software. Yet, GUI can simplify life of the user in many ways (context-
sensitive help, explorers, completion lists, menus or shortcuts to frequently-used
features). Thus, due to this ambiguity –beginners or occasional users want easier
GUIs, but they learn better habits with a bare CLI–, the “perfect” GUI for data
analysis software perhaps remains to be designed. It is probably a subtle balance
between several contradictory requirements.

The main motivation for creating SciViews is to raise the opportunity to de-
sign easily different kind of GUIs on top of various calculation kernels, in order to
encourage experimentation of concepts. The second major motivation relates to
the other side: the calculation kernel. Several ones exist, with their particularities,
their strengths and weaknesses. Therefore, not a single calculation kernel is able
to answer all questions equally well. Having the same, familiar GUI accessing dif-
ferent kernels is a big advantage in this context. Unfortunately, such a polyvalent
GUI does not exist. ESS (Emacs Speaks Statistics, [4]) introduced this attractive
concept of one UI capable to drive various different statistical kernels. However,
Emacs is a very particular UI, not really tailored to design GUIs (it is not its pur-
pose). SciViews aims thus to fill the gap. The present paper exposes its concept
and introduces a SciViews prototype (available at http://www.sciviews.org/).

2 Abstraction of the Kernel - GUI Interface

The key concept of SciViews is to provide a common, but polymorph object-oriented
interface between the calculation kernel and the (graphical) user interface whatever
the kernel and the GUI, in order to achieve their mutual exchangeability. This
supposes an intermediary layer to translate interactions like inputs and outputs
into a common set of methods and properties. In the SciViews jargon, we call this
intermediary layer a “Plug” (see Fig. 1). Communication between the GUI and the
plugs is centrally managed using an additional component: Xchanger.

http://www.sciviews.org/


DSC 2003 Working Papers 3

Figure 1: A GUI connects to various kernels using “Plugs”.

Adding this intermediary layer between the UI and the calculation kernel is
obviously resource consuming. Such an architecture is thus not pertinent when the
data flow between the UI and the kernel(s) is large or when performances suffer no
compromise. However, since it aims to substitute a typical command line interface,
this gives the conditions of use: the equivalent of a command line string issued by
the user for the input, and the equivalent of a few screens of textual results for the
output, with potentially alternate means to exchange larger amount of data that
will not flow through the plug (graphics, large matrices, . . . ). To define the limits
of usability of such a system, we will accept solutions where:

computation time >> transaction time

or, in the case of very short computation time:

number of transactions. sec−1 < 10

with: ‘computation time’ being the time required to process the command inside
the kernel and ‘transaction time’ being the processing time used by additional layers
placed between the GUI and the kernel. The first condition applies for computer-
intensive commands. It indicates that additional overhead due to the intermediary
layer should remain proportionally negligible. The second condition is a limitation
imposed for transactions that require very little computation in the kernel. A rapid
succession of such transactions between the GUI and the kernel would saturate the
processing unit with message passing through the intermediary layer. That second
condition fixes thus the highest sustainable flow of transactions that the system can



DSC 2003 Working Papers 4

guarantee. We arbitrarily place the limit at 10 transactions per second, that is,
indeed much more commands than a user can issue per second!

A prototype is developed to check the concept and to verify that it satisfies
these conditions. It is written using a RAD tool: Visual Basic 6 professional. A
simple GUI client (“Test Xchanger”) implements a few tests: (1) it can plug to
a R kernel and initiate computer-intensive transactions, (2) it can spawn 10 nodes
that each trigger transactions randomly in order to verify that concurrent use of the
resources is possible, (3) it can trigger 10 transactions per seconds to check CPU
usage in the second condition, and (4) it can fire as much transactions as possible
per time unit (stress test) to push the system to the limits. “Stats Xchanger”,
another simple SciViews client, calculates the number of transactions per time unit
actually achieved with a given test. Fig. 2 illustrates a test of the second condition
performed on a Pentium IV 1.6 Ghz with 1 Gb memory (but less than 256 Kb
is actually used) under Windows XP professional: the total CPU usage remains
lower than 25%, leaving about 75% of the CPU resources free for computations.
Of course, with a lower flow of transactions, that is, during usual conditions of
utilization, the CPU usage by the additional SciViews layer is much lower: just
a few percent, leaving much of the processing time for kernel’s calculations. The
prototype meets thus the two conditions.

3 Insider, a Versatile GUI Client

Several SciViews client GUIs are already planned: beside the simple test client
described here above, addins for Excel and for Word are in development. We also
initiate an ambitious client called “Insider”. Insider provides a modern, highly
flexible and customizable GUI with menus, toolbars, dockable windows, objects
and files explorers, an IDE for scripts editing and an integrated reporting system
combining rich-formatting text and images. Indeed, the list of the kind of document
Insider can manage is expandable, since new ones can be easily added. Better yet,
each document can freely interact with an unlimited amount of different calculation
kernels thanks to the object-oriented architecture of SciViews. Fig. 3 is a screenshot
of Insider showing a session with a single R kernel connected.

4 Nodes Hierarchy, System Integrity and Xchgr-
Mon

Even in a complex situation where possibly different GUIs connect to various kernels
on the same machine or through the net, we want to leave the maximum control to
the user. Each involved process is connected to SciViews Xchanger through a spe-
cial object called “Node”. Nodes are further organized into separate “Workspaces”.
A visual control of this organization is required. Direct interaction like interrupt-
ing transactions, forcing kernels disconnection at any time, or even killing frozen
processes without endangering the rest of the edifice are possible direct actions we
want to offer to the user.

Xchanger monitor (XchgrMon) displays graphically the hierarchy of workspaces,
nodes, plugs and connected kernels (Fig. 4). It displays also a dynamic report of
currently running transactions (in the ‘Activity’ tab, see Fig. 3). It allows direct
interaction with those items via context sensitive menus.



DSC 2003 Working Papers 5

Figure 2: The test application (Test Xchanger) running 10 transactions per seconds.
Stat Xchanger (top-left window) measures the actual number of transactions done
per time unit. The ‘Activity’ tab of the ‘SciViews Xchanger’ monitor (see also
section 5) is visible at the bottom-right. The Windows Task Manager is used here
to record CPU usage, which remains consistently lower than 25%.



DSC 2003 Working Papers 6

Figure 3: A sample Insider session with the integrated R console, a graph device
and a reporting window. At the top, just beneath the menu and the toolbars, the
command panel with a quick tip on the last used function (rnorm). A sample library
of commands, and an explorer (here, the files explorer) are docked at left.



DSC 2003 Working Papers 7

Figure 4: Xchanger monitor (XchgrMon) with the Workspaces, Nodes, Plugs and
Kernels tree and an ‘InfoTip’ giving detailed information about the node NID3,
that is, the node associated with the R Plug named ‘R #1’(this tree corresponds
to the Insider session depicted at Fig. 3).

Although these features are not implemented yet in the current prototype,
Xchanger monitor will also controls the good working of Xchanger. It will ver-
ify it is “living” and processing requests from the nodes, and it will periodically
check that the processes associated with the nodes are not frozen. It can kill any
frozen process. Of course, clients must be programmed in such a way that they can
recover from a killed connection at any time. This automatic clean up mechanism
will ensure that dead items are removed as soon as possible from the SciViews node
hierarchy, in order to maintain it fully operating.

5 Internal Architecture of SciViews

Until here, we mainly described externally visible features of SciViews. As a system
aiming to design GUIs, these are major aspects. The internal organization of the
different objects that have to collaborate together in order to achieve these results
will be briefly outlined hereunder.

Fig. 5 shows how the SciViews architecture translates into object classes, in
UML notations. The GUI (here it is Insider) contains one or more documents (Doc)
that instantiate various plugs through a common, polymorph interface (IPlug).
Each plug connects to a separate kernel. For instance, the class PlugR, a particular
realization of IPlug connects to the R kernel. All object instances that participate
in data exchange between the GUI and the kernels (except kernels themselves)
instantiate also a node class, used as an entry point to Xchanger. The navigable
(up and down) object hierarchy Node -> Nodes (collection of all node instances) ->
Xchanger allows message passing between these nodes. Finally, XchgrMon allows
the user to visualize and directly manipulate nodes, plugs and kernels.



DSC 2003 Working Papers 8

���������	��


�
���	������

���������
�	�����

�
��
��	���

 ���!	"��	����


 ���!	��
�#$���

�
���	���

%	%�&('�)�)
*�+�,�-	-
.	/ *�01*2&(34+�5�*
6�7�8�8 *�0�*�+�,�9�:<;�=?>
8 '@0	&('@+�+�*�&�, 7 +�=
6�7�8�8 *�0�*�+�,�A�*�01+�*�:B>

C

C

C

D

%�% 7 +E>4,B34+�, 7 34,<*�-�-

F?G�GHCD
C

C

C CCC�G�G�D

F?G<GBC

C &('@+�+�*�&�,�* 6 ,B'

C

C )I'@+ 7 ,B'@0

Figure 5: Class diagram for SciViews, when Insider is the client GUI.

5.1 The Plugs

Plugs offer the common interface by implementing the abstract IPlug class. Yet,
each plug interprets differently commands like Connect(), Disconnect(), Evaluate(),
. . . depending on the kind of kernel they manage. An IPlug-compatible client can
connect to various kinds of kernels, providing specific plugs exist. Plugs are pro-
grammed in order to require minimal changes in the code to adapt to a different
kernel. The plug that is currently developed for R will be thus easily adaptable to
other calculation kernels like Octave, Scilab, Ox, Splus, Matlab, Mathematica,. . .

Fig. 6 shows a sequence diagram during the lifetime of the plug, including
connection and disconnection of the kernel. Interactions with Xchanger are also
indicated. Xchanger collectively reports to all nodes changes like a node cre-
ation/destruction, or a kernel connection/disconnection. It associates also a NID
(unique Node Identifier) to each node.

Execution of the kernel in another process necessitates careful controls and syn-
chronizations. In particular, Connect() and Disconnect() require several verifica-
tions (does the kernel’s executable exist? Is it the correct version? Is it starting
when required? Is it closing gracefully after disconnection? Etc. . . ). These ad-
ditional steps are internally managed by the plug and remain transparent for the
client.



DSC 2003 Working Papers 9

���������	��
 ��
��	�

� �����	��
 � ���	�

��
 �������	���

����� 
	�������	�� � 
� ����!"
	���#
	�	��
	�%$���&	���"'������"'��($�' � ����
	�($

) ��* '��	������

�%�"��'����	+�,

��-".

���"��'����/+0,

�"��'��	1

�%
��	��� � �"+�,

.��"$ � 
��	��� � �"+�,

�����	�"$������2+�,

��-".

�%
��	�	� � �����(+0,

� * '����	�	+���-".43 � 
��	��� � ������,

.���$ � 
	���	� � ������+�,

� * '��	���/+���-".435�	��$ � 
	���	� � �����	,

Figure 6: Sequence diagram of the plug lifetime with kernel connection and discon-
nection.



DSC 2003 Working Papers 10

5.2 Asynchronous Management of Transactions

Just as Connect() and Disconnect(), Evaluate() is more complex than with a CLI. A
CLI is usually synchronous: the user must wait for the completion of the calculation
before further keying commands (Fig. 7). The console appears frozen during process
of the command by the kernel (a very limited set of commands are still possible and
handled in a special way, like Ctrl-C to interrupt the current calculation).

�����������
	�� �
�

����� ������	����
���

��� 	���� � 	�����	��
��� �
�
��	����
	��! 

"�#�$ �%� $ �
	�& � ����� $ ��'�� � ��$ �)(

�)	������%��� � ��$ �

* �)� � 	����

Figure 7: Sequence diagram for a typical “transaction” with a CLI.

With an event-driven GUI, it is not acceptable to freeze visible windows during
(long) calculations. This is the event loop problem evoked in the introduction. The
windows still have to react to system and user events. An asynchronous commu-
nication scheme is thus suitable here, but it is more complex that the sequence
presented in Fig. 7. It requires to manage time outs in order to verify that the
kernel processes the command and returns results in due time. This is partly the
role of an additional class, “Transaction”, to define and manage the context of this
exchange.

Fig. 8 is the complete sequence diagram for a transaction between any client and
the R kernel through PlugR. This is a sequence where the transaction is successful,
but various cases of failure are, of course, also managed. It operates as follows. After
successful connection to a kernel (see Fig. 6), a node sends an Evaluate(command)
message to the plug. The plug informs Xchanger that a new transaction is initiated,
and gets a unique identifier for that transaction (a TID). The plug then switches a
flag to busy=true. In this state, it cannot process other commands until it returns
to busy=false state, that is, when the current transaction is either fully processed,
or when it is interrupted. The plug returns the TID to the node (or 0 if it is busy
or not connected to the kernel). If the transaction is initiated, the plug sends the
command to the kernel, usually with minor changes (for instance, after verification
of a termination character at the end of the string), and the kernel starts processing
it. The plug informs Xchanger that the transaction is now in ‘processing’ state, and
Xchanger sends a similar message to the nodes.

Once the kernel has done its computation and has returned results to the plug,
the latter warns Xchanger that the transaction is ‘done’, and Xchanger passes the
message to all nodes. This message has an additional argument indicating which
kind of output data is available (text, numerical value(s), image, file, error mes-
sage,. . . ). The node can then selectively ask results to the plug that returns them,
possibly after translation into a format manageable by the client. Once this is done,
the plug returns in a busy=false state and it is ready to process another transaction.

Xchanger provides a mechanism to automatically interrupt too long transac-



DSC 2003 Working Papers 11

���������
	�� 
��
��� �������
��� �����
� ��� ������������������ �
�
�����

� �
� ��� � 	���! � ��"�" � �
�
#

$���	�!&%
��'�(�)*	��&�
��#

+���	�����'��
��	�!�#

����'�����	

$���	�!�%��
'�(�)-, � ��'���#


���.�/ � � �
' ��� 	������
!&#

/ 0�1


���.�!�/ 0&1�#

� ��� �
�
��!&/ 0�1�2
3���� � ��'�'����
�
#

� �
� ���
��!&/�0&1�2
3
�&� � ��'�'������
#

1��
�
��!&/ 0�1�#

1 �
�
��!&/ 0�1�#

$ �����
! � ��"�" � �
��#

� ��� � ��'�'

����	��
����!��&��'��
��	�#

Figure 8: Sequence diagram of an asynchronous transaction in SciViews.



DSC 2003 Working Papers 12

tions. When the client initiates a transaction, it provides two time out values: a
processing time out, and a reception time out. The processing time out is the
maximum allowed time to wait between the beginning of the transaction and the
completion of the calculation by the kernel (that is, when the kernel starts sending
back results). The receiving time out is the maximum delay permitted between the
beginning and the end of output returned by the kernel. If one of these time outs oc-
curs while the transaction is, respectively, in ‘processing’ or ‘receiving’ states, then
Xchanger warns the plug and the client node and they can in turn take required
action (cleanly stop the transaction or retry it, for instance).

The IPlug interface provides much more features, including full control of the
child windows created in the kernel process (graphs, dialog boxes, . . . ) but these
are not detailed here.

6 Conclusions and Perspectives

SciViews focuses on providing a common object-oriented communication between
different GUIs and calculation kernels. A flexible GUI designed for data analysis (In-
sider) is also provided. Some features that ease access to statistical analyses thanks
to object explorers, electronic reference cards (that we call “command libraries”),
menus and dialog boxes and also interactive graphs can be developed within Insider.
Although the whole software is just a prototype, it is a working “proof-of-concept”.
It is not platform-independent (Visual Basic and COM on which the prototype re-
lies are proprietary developments of Microsoft, and they run only under Windows).
A different implementation –in Java, or C++/CORBA– would be required to run
on Unix/Linux or MacOS. Nevertheless, we will continue to develop the current
prototype in the near future, because there is an urgent need for a R GUI under
Windows.

Obviously, many aspects require optimization, including the way plugs communi-
cate internally with the kernels (we used the ESS mode of R for the current PlugR).
However, interlanguage communication libraries are rapidly evolving for data analy-
sis software like R (see the Omega Hat project, http://www.omegahat.org). Since
this communication process is encapsulated inside the plugs, such changes or op-
timizations could be done hopefully without touching at the rest of the SciViews
architecture, and more particularly, without modifications of GUI clients.

The R Plug is complementary to the R COM server and client independently de-
veloped [5]. The R Plug is much more complex because it manages exchanges asyn-
chronously, it has to cope with a complete object hierarchy (workspaces, nodes,. . . ),
and it is intended to be more robust against failures in the client or the server. The
R COM server thus remains much simpler to use outside of the SciViews context.
Due to these differences, we regard both the R Plug and the R COM server as two
complementary products. Yet, it should be profitable to homogenize the syntax of
their methods and properties as much as possible.

We hope that SciViews will raise opportunities and interests to experiment var-
ious kind of GUI metaphors (menu/dialog box, spreadsheet, notebook, object ex-
plorer, . . . ) in the context of data analysis, with R, but also with other free systems
like Octave or Scilab. A more efficient, yet intuitive man-machine interfaces could
perhaps emerge from such experimentations in the particular field of data analyses.

http://www.omegahat.org


DSC 2003 Working Papers 13

7 References

[1] Ihaka, R. and Gentleman, R., 1996. A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299-314.

[2] Eaton, J. W., 2001. Octave: past, present, and future. In Kurt Hornik and
Friedrich Leisch, editors, DSC 2001 Proceedings of the 2nd International Workshop
on Distributed Statistical Computing, http://www.ci.tuwien.ac.at/Conferences/
DSC-2001/. ISSN: 1609-395X.

[3] Dalgaard, P., 2001. The R-Tcl/Tk interface. In Kurt Hornik and Friedrich
Leisch, editors, DSC 2001 Proceedings of the 2nd International Workshop on Dis-
tributed Statistical Computing, http://www.ci.tuwien.ac.at/Conferences/DSC-2001/.
ISSN: 1609-395X.

[4] Rossini, A., Mächler, M., Hornik, K., Heiberger, R. M., and Sparapani,
R., 2001. Emacs Speaks Statistics: A universal interface fro statistical analysis.
Report 164, Department of Biostatistics, University of Washington. URL http:
//software.biostat.washington.edu/statsoft/ess/ess~techrep.pdf.

[5] Baier, T., and Neuwirth, E., 2001 Embedding R in standard software, and
the other way round. In Kurt Hornik and Friedrich Leisch, editors, DSC 2001 Pro-
ceedings of the 2nd International Workshop on Distributed Statistical Computing,
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/. ISSN: 1609-395X.

http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
http://software.biostat.washington.edu/statsoft/ess/ess~techrep.pdf
http://software.biostat.washington.edu/statsoft/ess/ess~techrep.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/

	Introduction
	Abstraction of the Kernel - GUI Interface
	Insider, a Versatile GUI Client
	Nodes Hierarchy, System Integrity and XchgrMon
	Internal Architecture of SciViews
	The Plugs
	Asynchronous Management of Transactions

	Conclusions and Perspectives
	References

