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V. Gómez-Rubio, J. Ferrándiz and A. López

Abstract

One of the main concerns in Public Health surveillance is detection of
clusters of diseases [1], i. e., the presence of high incidence rates around a
particular location, which usually means a higher risk of suffering from the
disease of study.

Many methods have been proposed for cluster detection, ranging from
visual inspection of disease maps to full Bayesian models estimated by using
M.C.M.C.

In this paper we describe the use and implementation, as a package for
R, of several methods which have been widely used in the literature, such as
Openshaw’s G.A.M., Stone’s test and others [20] [21] .

Although some of the statistics involved in these methods have an asymp-
totic distribution, bootstrap will be used to estimate their actual sampling
distributions.

1 Introduction

Clusters of disease can be defined in several ways, but probably the simplest way
is to say that a cluster is a set of neighbouring areas where far more cases that
expected appear during a concrete period of time. For this reason, Public Health
Authorities have always been concerned about this kind of clusters.

Beginning from Snow’s study [16] over an outbreak of cholera in London, whose
focus he found by plotting the location of those people affected, many methods have
been developed to detect spatial clusters of diseases.

Some of these methods, which have repeatedly appeared in the bibliography and
that have been widely used in real studies, are described in this paper. Besides, we
describe the use of a new package for R called DCluster that implements routines
to use all these methods. Although there are several packages available in R for
clustering, they provide general methods and none of them is devoted to spatial
clusters of diseases.

In this paper, first we will present the general structure of the data available
for the problem of cluster detection, followed by the most usual statistical models



DSC 2003 Working Papers 2

used. After that, we will briefly describe methods implemented in DCluster, and
bootstrap procedures. Finally, we explore the use of these methods using real data.

2 Data Structure

Supposing that our study region is divided in n non-overlapping regions (which
may be counties, provinces, municipalities, ...), data available are usually found as
counts, that is, number of deaths or affected people in each region.

Let us represent by Oi the observed number of cases (usually, deaths) in region
i, Ei its expected number, which may be calculated in several ways, and Pi the
population at risk in region i. By O+, E+ and P+ we will represent the sums over
all the regions of observed cases, expected cases and population.

Usually population is stratified according to age and sex and, sometimes, a
measure of deprivation or poverty. So, Pij will mean people at stratum j in region
i. It is clear that Pi =

∑
j Pij . Oij and Eij can be defined in a similar way.

Eij are usually calculated using indirect standardisation. That is, if we have a
reference population from which we know their incidence rates (rij = O

′

ij/P
′

ij) for
each stratum, then we have Eij = Pijrj .

When the reference population is the same than the population under study,
standardisation is called internal and it holds that O+ = E+.

Finally, spatial location of regions will be done by their centroids, which mark
the centre of the total area. This centroids are usually not taken as the geometrical
centre, but are weighted by the actual population location within the region.

3 Statistical Models for Diseases

As a first approximation, we will consider Oi’s to be independent and drawn from
a Poisson distribution whose mean is θiEi, where θi is the relative risk, which
measures the local deviation of the disease. If the relative risk is over 1 then there
is an excess in risk in that region.

The maximum likelihood estimator for θi, which is called the Standardised Mor-
tality Ratio (S.M.R.), is θ̂i = Oi/Ei. This estimation can be used to create thematic
maps to show the spatial risk of the disease.

Unfortunately, the variance of this estimator is proportional to 1/Ei, so esti-
mations arising from rare diseases or low populated areas, where the number of
expected cases is really low, may lead to poor estimators.

Conditioning on O+ leads us to a Multinomial model, in which the size is O+

and probabilities are given by (E1/E+, . . . , En/E+). This model is often used when
performing Monte Carlo simulations to estimate distributions of different statistics
[3].

Notice that this model is equivalent to distribute total observed cases at random
among all the regions using Ei as weights.

Poisson model is too strict in the sense that it imposes mean and variance to
be equal. When data exhibits some kind of overdispersion Poisson distribution is
unlikely to be the right one.

Clayton and Kaldor [4] propose the use of a hierarchical Bayesian model in which
relative risks are drawn from a Gamma distribution with two fixed hyperparameters
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and, conditioned to θi, observed counts Oi are independent realizations from a
Poisson distribution whose mean is θiEi:

Oi|θi ∼ Po(θiEi)
θi ∼ Ga(ν, α)

As a consequence, Oi is distributed following a Negative Binomial with size ν
and probability α/(α + Ei). ν and α are usually estimated via Empirical Bayes.

M.L.E. for θi is now (Oi + ν)/(Ei + α), which provides a smoothed estimator
of the relatives risks. These estimators are usually used when performing a disease
mapping.

4 Implemented Procedures

Methods implemented in package DCluster can be classified as general and focused,
as discussed by several authors [2] [18]. This distinction is made depending on
whether they search for clusters over all the study regions or they assess the presence
of a cluster just around a given region.

Furthermore, we have considered another groups of statistics that provide a
global measurement of clustering, homogeneity among relative risks or autocorrela-
tion.

4.1 Tests for homogeneity

These methods can be used as a first approach to the problem to investigate whether
relative risks are homogeneous (i.e., equal) along the study region. Differences
between relative risks may lead to zones where they are higher (or lower) than
expected and, hence, a cluster may be present.

4.1.1 Pearson’s Chi-square Statistic

The value of this statistic is well known:

T =
∑n

i=1(Oi − Ei)2

Ei
(1)

Test hypotheses are as follows:

H0 : θ1 = . . . = θn = λ
H1 : Not H0

In the case where λ is unknown, Ei must be substituted by Ei
O+
E+

in expression
(1) and the statistic is asymptotically distributed as a Chi-square with n−1 degrees
of freedom [15, 14].

Usually, λ is supposed to be 1. In this case, no modification to Ei is needed and
the degrees of freedom are n.

The case in which internal standardisation is used is slightly different, in the
sense that, since O+ = E+, λ must be 1 and the degrees of freedom are n− 1.

Notice that this statistic is also sensitive to low observed cases and that non-
homogeneity may not only be related to high relative risks but also to low ones.
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4.1.2 Potthoff-Whittinghill’s Test

They [14] assume that data come from a Multinomial distribution and consider the
locally most powerful test for related to the next test hypotheses:

H0 : θ1 = . . . = θn = λ
H1 : θi ∼ Ga(λ2/σ2, λ/σ2)

Notice that the alternative hypotheses means that relative risks are drawn from a
Gamma distribution with mean λ and variance σ2.

The statistic involved in the test is:

PW = E
∑ Oi(Oi − 1)

Ei

which asymptotically is normally distributed, with mean O+(O+−1)) and variance
2(n− 1)O+(O+ − 1).

This is a general test for homogeneity, and λ is supposed to be unknown. Notice
that if internal standardisation was carried out, then the hypotheses of homogeneity
implies λ to be equal to 1.

4.2 Autocorrelation

Statistics presented in this section measure spatial autocorrelation of the data. Usu-
ally the quantities involved are S.M.R.s or residuals By working with the residuals
we look for correlation among what wasn’t explained by our primary model. When
using S.M.R.s, we expect to find regions where they tend to be higher (or lower).

4.2.1 Moran’s I Statistic

The idea behind Moran’s I statistic [11] is very close to that of correlation coefficient

I =
n

∑
i

∑
j Wij(Zi − Z)(Zj − Z)

2(
∑

i

∑
j Wij)

∑
k(Zk − Z)2

As mentioned before, Zi may be either residuals (Oi −Ei) or relative risks. W is a
matrix which measures vicinity between regions, and it can be defined in different
ways. For example, it can be 1 if the regions have a common boundary (and 0
otherwise) or the inverse of the distance between their centroids.

It has been noticed that this statistic is quite robust [23] against changes in
sampling distribution.

4.2.2 Geary’s c Statistic

Geary’s c statistic [8] is defined in a similar way than Moran’s I:

c =
(n− 1)

∑
i

∑
j Wij(Zi − Zj)2

2(
∑

i

∑
j Wij)

∑
k(Zk − Z)2

Notice that now differences between two values are computed instead of their de-
viation from the mean. W is, again, a matrix that measures proximity between
regions.
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4.3 General clustering

These methods provide a general measurement of clustering in the whole area. For
this reason, they are not suitable for detecting localised clusters.

It is known that these methods may fail to detect global clustering when actual
clusters are small or scatter all around the study area.

4.3.1 Whittermore’s statistic

It [22] is based on the distance between all pairs of cases, and is defined as:

W =
n− 1

n
rT Dr

{
rT = [O1/O+, . . . , On/O+]
D = (dij) distance between centroids

This statistic has been heavily criticised [19] because it only cares about the observed
number of cases, and not about discrepancies between observed and expected cases.

4.3.2 Tango’s statistic for general clustering

It was proposed by Tango [19] as a modification to Whittermore’s statistic, and it
is defined as follows:

T = (r − p)T A(r − p)

 rT = [O1/O+, . . . , On/O+]
pT = [E1/E+, . . . , En/E+]
A = (aij) closeness matrix

Tango suggests taking aij = exp{−dij/φ}, where dij is the Euclidean distance
between regions i and j (i.e., their centroids), and φ is a positive constant used to
measure how strong is dependence between zones.

4.4 Scan statistics

These methods are proposed to scan small areas within the whole study region
and look for clusters. Some of these methods, specially G.A.M., have been highly
criticised because they perform many non-independent tests. Their defenders argue
that, on the other hand, the level of the local tests can be corrected and that there’s
no bias in the investigation of cluster locations because data have not been explored
a priori.

4.4.1 Openshaw’s GAM

Probably this is the first scan method proposed [13]. It is based on creating a grid
over the study region and building balls (i.e., circles) of a given radius centred at
that points.

For each ball, a local test is performed to decide whether it is a cluster or not.
Those balls which are found to be a cluster are drawn on the map. This way, by
looking at those areas where more circles where drawn, we can get an idea of where
clusters may be.

By default, the test implemented in this package compares the local observed
number of cases to the quantile of level α of a Poisson distribution whose mean is
the local expected number of cases. Local observed and expected number of cases
are just the sum over these quantities along regions whose centroids fall within the
ball.
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4.4.2 Besag & Newell

This method [2] is proposed to detect clusters of size k, that is, regions that grouped
together reach k observed cases.

Taking each case as centre of a possible cluster, the other regions are sorted
according to distance to this one and the number of regions needed until k cases
are found is computed (Li). The observed number of regions to obtain k cases will
be called li.

Then, it is tested whether li is low enough to be a cluster or, what is equivalent,
the probability of finding more than k cases in these li regions. When data come
from a Poisson distribution this probability is:

p-value = P (Li ≥ li) = P (N. cases > k|λ = E∗
i ) = 1−

k−1∑
s=0

exp(E∗
i )(E∗

i )s

s!

λ represents the mean of the underlying Poisson distribution while E∗
i is the sum

of the expected number of cases of the li regions.

4.4.3 Kulldorff & Nagarwalla

They [9] also create a grid and they consider, for a given point, the set (Z) of all
possible circles centred there containing up to a fraction of the total population.
For each one of these circles, they are interested in the probability of being a case
inside (p) and outside (q). If p is much higher than q then the circle can be viewed
as a cluster.

For this reason, they propose the next test at each point:

H0 : p = q
H1 : p > q

They compute the maximum likelihood ratio, under the assumption of a Poisson
model and conditioning to the total number of observed cases. This is equivalent
to consider the next statistic:

KN = max
z∈Z

L(z)
L0

where L0 and L(z) are defined this way:

L0 =
O

O+
+ (P+ −O+)P+−O+

NN

L(z) =

 (OOz
z (Pz−Oz)Pz−Oz

P Pz
z

)( (O+−Oz)O+−Oz (P+−Pz−(O+−Oz))P+−Pz−(O+−Oz)

(P+−Pz)P+−Pz
if Oz

Pz
> O+−Oz

P+−Pz

O
O+
+ (P+−O+)P+−O+

NN if Oz

Pz
≤ O+−Oz

P+−Pz

OZ (PZ) represents the sum of the observed number of cases (population at risk)
of all the regions whose centroids lay within circle Z.

Pvalue can be calculated by means of bootstrap or Monte Carlo simulations.
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4.5 Focused tests

Unlike scan methods, the method presented here consider a single (or just a few)
region around which the hypotheses of clustering is tested. This region usually
contains a pollution putative source which may be thought to affect Public Health.
Examples of such sources are nuclear plants, waste deposits or incinerators.

A bias will be introduced in the study if these methods are used after data
examination suggested the presence of a cluster. This is due to the fact that we
try to assess whether the observed number of cases is extremely high after knowing
that it is in fact high. Then, the probabilities of rejecting null hypotheses will be
increased.

4.5.1 Stone’s Test

Supposing that all regions are sorted according to distance to the central region,
Stone [17] propose the next test:

H0 : θ1 = . . . = θn = λ
H1 : θ1 ≥ . . . ≥ θn

which is performed with the next statistic:

T = max
1≤j≤n

∑j
i=1 Oi∑j
i=1 Ei

Again, if λ is supposed to be unknown, expected number of cases must by multiplied
by O+

E+

5 Bootstrap

Since sampling distributions of statistics used in these tests can be difficult to derive,
we propose the use of bootstrap sampling to estimate them. The idea is to choose a
suitable model or distribution for the data and to simulate the observed number of
cases at every region. For each of this simulations, the value of the statistic being
used is calculated.

After a number of simulations have been computed, we have an approximation
of the sampling distribution of this statistic and pvalues can be easily calculated.

Four possible procedures (which are explained below) seem us to be adequate:
Multinomial bootstrap [20], Poisson bootstrap [12], a Negative Binomial bootstrap
[4] from the Poisson-Gamma model and permutation bootstrap.

The first three are based on models explained in section 3. Notice that they
may be used depending on whether our data exhibit extra-variation or not.

If it is not found in a preliminary study over the data, then Poisson bootstrap
may be used (and even Multinomial). If we think overdispersion may be related to
our data, then perhaps it is better to use Negative Binomial sampling.

Notice that, if O+ is high compared to the number of regions (n), then Multino-
mial and Poisson bootstrap will produce almost the same results, since Multinomial
distribution can be obtained from Poisson framework by conditioning on O+, and
small variations in O+ will not affect Multinomial distribution strongly.
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Permutation bootstrap is based on redistributing relative risks or residuals among
all regions without replacement. It has been used when assessing spatial dependence
between neighbouring regions [10] [23] by means of spatial autocorrelation.

6 DCluster overview

In the first place, data must be stored in a data frame with, at least, the following
columns: Observed (number of cases), Expected (number of expected cases),
Population (total population at risk), x (centroid easting coordinate) and y (cen-
troid northing coordinate). Some functions also need a distance or closeness matrix,
which must be squared n× n.

Package boot have been used to compute bootstrap by means of function boot.
This function needs as input the data frame mentioned before, the statistic to
compute and the basic model for sampling the data.

For every statistic presented before some functions have been implemented. Ba-
sically, one to compute its value given a data set and another two to be used in
bootstrap, be it non-parametric (permutation) or parametric (Multinomial, Poisson
or Negative Binomial).

Once bootstrap is performed, a object of type boot is returned by function boot.
This object can be plotted to obtain a histogram of the simulated values, where
the observed value is also marked and a normal qqplot is also drawn. This graphic
gives a quick and easy answer to whether observed data are significant or not.

For scan statistics, there is a main function called opgam, which implements
the general Openshaw’s G.A.M. This function basically needs a data set, a way to
build the grid (which can be done in several ways) and a function, which we call
iscluster, to assess whether the local area being inspected at each point of the
grid is a cluster or not. This provides a general framework that have been used in
the implementation of other scan methods.

For every scan statistic described above, a version of iscluster has been im-
plemented following general guidelines (which are deeply explained in package doc-
umentation). The object returned by these functions is a list containing the coordi-
nates (x and y) of the point marked as cluster, the value of the statistic (statistic)
and the associated pvalue (pvalue). No boot object is returned this time since they
are used in local calculations only.

opgam returns all this information for the points that resulted to be significant
according to the significance level choose by the user. For those points that were
not clusters nothing is returned.

It is worth saying that for Besag & Newell’s statistic exact p-values are calculated
when sampling from Multinomial, Poisson of Negative Binomial distributions. In
the future exact calculation of p-value for Stone’s Test will be added too.

7 Example

In order to illustrate the use of package DCluster a brief example using real data
is provided below. Data employed are Sudden Infant Death Syndrome (SIDS) in
North Carolina between years 1974 and 1978. They are described, for example, by
Cressie and Chan [5], and Cressie [6].
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These data are available in package spdep, and they have been reformatted to
accomplish DCluster requirements. Population at risk is the number of births,
while the expected number of cases have been calculated by Pi

O+
P+

. Furthermore, a
matrix containing distances between centroids have been created.

Figure 1 shows boxplot and a histogram, which provide a brief summary of SIDS
data.
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Figure 1: Boxplot and histogram of SIDS data.

In order to choose a suitable sampling model, a likelihood ratio test have been
performed between a fitted Negative Binomial and Poisson models, resulting on the
first one to fit better the data (pvalue of 0). Tests based on statistics PB and P ′

B

proposed by Dean [7] were also carried out and their resulting p-values were both
0. These results led us to use a Negative Binomial distribution when bootstraping.

Estimated parameters for the prior Gamma distribution are ν̂ = 4.630689 and
α̂ = 4.395678. This means that smoother relative risks will not be strongly changed.

Figure 2: Relative Risks and Smoothed Relative Risks Estimators (Poisson-Gamma
model).

Figure 2 shows relative risks and smoothed relative risks estimators. There it
is shown how areas with extremely high or low relative risks are smoothed. Two
clusters are clearly found on that maps to the south and northeast.

Under the assumption that data come from a Negative Binomial distribution,
with the Empirical Bayes estimated Gamma parameters, pvalues related to each
region have been plot in Figure 3. It shows that just a few isolated areas have been
marked as significant, which means that with this distribution data apparently do
not cluster around any location.

As shown in Figure 4 1 both methods (Pearson’s Chi-square and Potthoff -
Whittinghill) used to test homogeneity in the data show that we can’t reject null

1For both statistics it can be seen a histogram of simulated values of the statistic togehter with
its observed value (dashed line), and a normal qq-plot.
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Figure 3: Pvalues calculated for each area according to the hypotheses that data
are drawn from a Negative Binomial.

hypotheses of homogeneity. Negative Binomial is more variable than Poisson dis-
tribution, so it happen that more wide values are allowed and, hence, more extreme
value of these statistics are also high probable in the simulations.
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Figure 4: Chi-square Test and Potthoff-Whittinghill’s Test.

Autocorrelation measures calculated for residuals are shown in Figure 5. Weights
used where 1 if counties where neighbours and 0 otherwise. It is clear that data
exhibit some kind of spatial correlation because observed values are found in the
queues of sampling distributions. In this case permutation bootstrap was used,
instead of sampling from a Negative Binomial distribution.

This means that there will appear zones were the number of observed cases may
be high and, hence, clusters may also appear. Notice that it is also possible that
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correlated areas are those with low risks.
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Figure 5: Moran’s I Statistic and Geary’s c Statistic.

General clustering statistics (Whittermore’s and Tango’s), as seen in Figure 6, do
not show any evidence of general clustering because observed values of statistics fall
in highly probability regions of sampling distributions. This fact can be explained
by considering that really significant regions, according to the Negative Binomial
distribution, are locally found and that there is no global tendency to cluster among
them.

Since these methods are designed to detect global trends, if clusters are small
or weak they will not be not detected by these methods, which is probably the case
now.
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Figure 6: Whittermore’ Statistic and Tango’s Statistic.

Scan methods described before were also employed, and table in Figure 7 sum-
marises the parameters used. Notice that for G.A.M. and Besag and Newell’s
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method no bootstrap is performed, since the exact critical value is calculated using
the Negative Binomial distribution.

Method Grid Radius Sig. Level
G.A.M. step=radius/5 10 miles 0.002
B. & N. centroids 20 cases 0.05
K. & N. centroids ≤0.2 tot. pop. 0.05

Figure 7: Arguments of the different scan methods used.

Significance level has been set to 0.002 for G.A.M, which is the one proposed
by Openshaw [13]. Concerning the two other methods, significance has been set to
0.05, as proposed by Kulldorff and Nagarwalla [9]. In this paper they also compare
their method to Besag and Newell’s, so we think 0.05 is a suitable significance level
to show differences between both methods.

G.A.M. clearly marks just one area as cluster, which corresponds to county 4,
the one with the highest S.M.R.

Kulldorff and Nagarwalla’s method marked 21 counties as clusters, which can
be found grouped in two zones, to the south and northeast. None of them is the
one pointed out by G.A.M. Notice that these counties have high S.M.R.s as shown
in Figure 2.

Besag & Newell’s was tested with cluster size 20, which is over three times the
mean of the observed number of cases. This method didn’t marked any of the
centroids as a significant centre of a cluster (of size 20). More tests should be done
by varying the size of the cluster because when don’t know the actual size of the
clusters, if present, in the study area.

Figure 8: Results from several scan methods. Coordinates are in U.T.M. to show
real distances between centroids.
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Cressie and Chan [5] mention that they removed county 4, which is the one
that has been considered a cluster by G.A.M., from their study because of its high
residual,

Since this high residual may be due to an unknown risk factor in the county
which may be the responsible of the appearance of a cluster, Stone’s Test was
carried out over county 4. The result is shown in Figure 9, which clearly suggests
that there is a cluster in that region.

Notice that this test must be performed before examining the data, since a bias
is produced by trying to apply Stone’s Test over those regions with highest relative
risks. This will produce an increment in the probability of being significant.
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Figure 9: Stone’s Test Results.

8 Concluding remarks

In this paper we have presented different methods used for exploratory analysis of
epidemiological data and detection of spatial clusters, and the implementation we
have done in R of all of them. A suitable bootstrap sampling has been proposed to
estimate distributions of the statistics involved in the analysis.

Furthermore, an example using North Carolina SIDS data has also been dis-
cussed. In the future we plan to compare the behaviour of all these methods under
the different bootstrap samplings in order to see which methods are more robust.
This is specially useful when working with real data, since we don’t know its actual
distribution.

Other methods will be added to this package in the future.
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