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Abstract
We discuss how sophisticated machine learning methods may be rapidly

integrated within a GIS for the development of new approaches in landscape
epidemiology. A multitemporal predictive map is obtained by modeling in R,
analyzing geodata and digital maps in GRASS, and managing biodata samples
and weather data in PostgreSQL. In particular, we present a risk mapping
system for tick-borne diseases, applied to model the risk of exposure to Lyme
borreliosis and tick-borne encephalitis (TBE) in Trentino, Italian Alps.

1 Background

GIS, Machine Learning and Landscape Epidemiology

In a landscape epidemiology problem, data are collected on sampling sites and then
generalized using a Geographical Information System (GIS): we can think of the
procedure in terms of a machine learning problem, in which from few hundreds of
examples a classification or regression function (e.g. presence or absence of an in-
fective agent, or density of infection vectors) is estimated for an entire territory of
thousands or of millions of cells, from several input variables, each defined through
a digital map. The variables may be numerical (e.g. altitude from a digital ele-
vation model) or categorical (e.g. vegetation class coverages). Multitemporal high
resolution remote sensing sources are in particular now available that may allow to
model time-varying output maps.

Scripts or Dedicated Programs?

In previous studies, we demonstrated that machine learning models as single or
aggregated classification trees may be effectively used to develop GIS digital maps
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of the probability distribution of infected nymphs of the vector Ixodes ricinus (L.)
in the Province of Trento at high resolution scale [11, 7, 14]. Our 1996 model was
obtained through a script interface between the statistical computing environment
S-Plus and the GIS map building and visualization tools of the GIS GRASS [13]. The
procedure was rather laborious: a table of site data descriptions and of tick sampling
data was imported in S-Plus, a sequence of tree-based classification models was
constructed and a model selected according to a particular bootstrap method, the
.632+ rule [6, 12]. A customized version of the corresponding S-Plus tree object
was then exported, parsed by a Perl script, and fed into the r.mapcalc interpreter
for map algebra in GRASS. Although this approach gave better results than a
standard linear discriminant model, automation was limited. More complications
were then needed in order to use more accurate models, as with multiple classifier
combination (or ensemble learning) approaches as bagging [4] or boosting [15], which
were thus implemented as stand-alone procedure in GRASS.

The Integration of R and GRASS

The progresses of the R-GRASS interface [2, 1, 13] provide an important simplifi-
cation of the risk modeling phase, or at least of the development of the prototype
model. In this paper we show how easily we were able to integrate into GRASS
the recent randomForest [5] ensemble prediction method. The randomForest tech-
nique was recently ported as an R package [10], and it is thus now available also for
GIS analysis without requiring a direct implementation in a GIS system, once the
needed data are sourced into R objects. The randomForest method uses a classifi-
cation tree as a base model, thus allowing a mix of numerical and categorical input
variables, a typical situation with GIS models. Useful subproducts of randomForest
computation, as the variable importance plots are also available.

A System for Environmental Risk-mapping

As it will be detailed below, all the critical data in this problem are endowed with
geographical coordinates: they are maintained in a GIS location or in the project
database. The working system is actually a mixed environment of GIS and database
management systems tools and data structures. We may especially take advantage
of the date/time structures available in PostgreSQL, and of all the data conversion
libraries which allow high integration of GRASS and PostgreSQL. Thus the modeling
phase requires to extract examples of associations between predictor and target
variables from this mixed environment. Connecting R to PostgreSQL and to GRASS
at the same time, as well as connecting PostgreSQL and GRASS together as needed,
makes R a very productive working environment. Both interactive (e.g. the ESS
Emacs mode) and batch modes are available for variable preprocessing, analysis,
model development and selection, and finally for map production. It is important
to note that we may use time varying data inputs as meteorological data. The
climatic data may be directly obtained as raster maps from remote sensing imagery.
Otherwise the maps needs to be computed by spatial interpolation of climatic time
series from stations. Above all, in order to extend to all the territory the prediction
modeled from the data collected on sampling sites, it makes sense to use for model
development only variables which are effectively available as maps, dropping detailed
descriptions available only for the sampling sites or for a fraction of the target
territory.
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The map is returned to GRASS or to the WebGIS component, a solution for
geodata visualization on Internet based on the MapServer Open Source software,
which we have extended for epidemiologic data management and used as a notifi-
cation system in order to add new data with geolocation [8].

As far as the application is concerned, the R-GRASS interface allowed the rapid
development of a mesoscale risk map of tick presence at 100×100 m2 pixel resolution.
Note that a openMosix cluster was used to produce several of the predictor variables
involved in the study. The project results are distributed through the ECODIS
server http://mpa.itc.it/ecodis/.

We will describe in the rest of the paper several technical details of the sys-
tem, illustrating a prototype model recently developed also with the introduction
of multitemporal climatic data.

2 Methods

Connections among PostgreSQL, GRASS 5.1 and R

The recent developments of GRASS 5.1 provide a much stronger linkage between the
GIS and RDBMS such as PostgreSQL. Besides attributes storage in the database
system, also geometry data can be read and written to PostgreSQL extended by
PostGIS. Along with the integration of R into GRASS as well as the DBI interfaces
for R circular connections for quick data retrieval and processing is possible. In
interactive sessions, R has to be run from within the GRASS shell environment ([3],[1]).
The interface is dynamically loading several compiled GIS library functions into
the R executable environment. Several crucial information being transferred to R
are the GRASS metadata defining the regional extent and the raster resolution of
the area of study, known as the GRASS LOCATION. The interface is currently
supporting raster and site data. Since March 2003 the R-GRASS interface is placed
in the standard contribution section of CRAN.

Field data characterization

To determine the distribution and relative abundance of I. ricinus, questing ticks
were collected in 434 sites of the Province of Trento (see Fig. 2) from 10 March
to 15 October 1996, by dragging vegetation using a standardized procedure. More
biological and technical details on data are available in [14]. Data on distribution
and abundance of questing ticks collected in each site are available as a database
connected to the GRASS. This connection allows characterizing the sampling sites in
terms of the environmental variables correlated to the tick presence.

In particular, the following environmental variables were considered in this
study:

• altitude: a general, long period indicator of the climate, e.g. of the average
annual temperature;

• geological substratum: related to soil humidity and main vegetation types;

• roe deer density: the main tick host within large mammals usually infested
by I. ricinus;

http://mpa.itc.it/ecodis/
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Figure 1: Map showing the elevation, the climatic stations from the Province of
Trento (red boxes) and the ticks sampling sites of the 1996 campaign (yellow crosses)

• vegetation: related to the main habitat of other tick hosts, e.g. small mam-
mals;

• winter precipitation: potentially correlated to the abundance of larvae sur-
vived with respect to the previous year;

• min temperature: the average of the minimal temperatures of the 30 days
before sampling is a short period indicator of the climate;

• convexity: the local profile convexity measures, computed from the digital
elevation model are potential descriptors of local microclimatic conditions.

Sampling and Climatic data

Climatic data were available for ten years (1990-1999) for 142 meteorological sta-
tions of the Province of Trento, Italy (see Fig. 2 for the distribution of sampling
sites and climatic stations). The climatic data as well as the ticks sampling data are
kept in PostgreSQL tables. Three time series of temperatures (tmean, tmax, tmin
for 1995–1997) were extracted with SQL queries from station tables and used to
create temperature maps for the whole area (about 6250 km2) for 63 stations valid
along the whole period. An approach adapted from [9] was used, based on 3D Reg-
ularized Splines with Tension (RST) interpolation. As data were not interpolated
during the winter time, thus no temperature inversion was to be expected in the
bottoms of the valleys. The interpolated temperature maps were used to pick daily
temperature for the sampling sites, and those values were returned into SQL tables
for later use. A similar procedure was performed for accumulated precipitation for
the two winters before the sampling year (1994 and 1995), for the time intervals
[1 Nov – 28 Feb]. Also, direct potential radiation maps (with shadow) at days 21
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March, 21 June, 23 September, 21 December, were computed in GRASS, evaluated
for the sampling sites, and organized in SQL tables.

The model

The target of this study was the use of the randomForest predictor and developing
a spatial model of the probability of tick presence, given environmental biotic and
abiotic input variables. The environmental data described above, being defined as
maps along most of the area of study, allowed to create tables in the DBMS of
all the variables of potential interest. A project data frame was thus developed,
with absence/presence of ticks as the target variable (presence: 224 sites, absence:
210 sites), and altitude (alt.dem.10m), plan convexity (plancs11.30m) and profile
convexity (profcs11.30m), main geological substratum (genesis), roe deer density
(densita.caprioli), vegetation (vegetazione: 11 classes), accumulated precipitation
(prec.winter.95: 108 – 351 mm), mean of min temperature in the 30 days before the
sampling (min.temp.3).

In the random forests algorithm, prediction is obtained by aggregating classifi-
cation or regression trees each constructed using a different random sample of the
data (as in bagging), and choosing splits of the trees from subsets of the available
predictors, randomly chosen at each node [5, 10]. The randomForest model in this
study was obtained by aggregating 1000 trees as base classifiers, with 2 variables
tried at each split. Given an input pattern, the model outputs the probability
of tick presence: by using the connection between R and GRASS, the model was
applied to each cell (100×100 m2) of the entire study area, for a total of 545015
outputs (mostly waters, urban areas and intensive agriculture areas were omitted
from computation).

The main result of this procedure is thus a map of the probability of tick presence
covering all Province of Trento. As the min temperature variable introduces a time-
varying effect, the model allows simulating how the risk map changes with respect
to the short horizon temperature.

The main components of the software environment were R (1.6.2, with random-
Forest, lattice, DateTime classes, Rdbi), GRASS (5.0.0, 5.1.0), R/GRASS interface
(0.2-6), PostgreSQL (7.2). Due to the multitemporal structure of the data the R
DateTime classes were heavily used, in particular for treating climatic data from
stations.

3 Results

In this study we use the “out-of-bag” (OOB) estimate of the error rate of the model.
At each bootstrap iteration, a tree is grown on data extracted on the bootstrap
sample, and apply for prediction on data not in the bootstrap sample. The error
rate calculated by aggregation of the OOB prediction is the OOB estimate of the
error rate. The out-of-bag model error estimate for the randomForest model of 1000
trees is 28.6%. More specifically, the error on the tick presence sites is 27.2%, and
32.9% on the absence sites.

The random forest algorithm also produces extra information that allow to eval-
uate the importance of each explanatory variable: following [5], the implementation
of random forests in R at the time of preparation of this study provided four “vari-
able importance” measures. There are two main types of importance methods,
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based respectively on label permutation and on impurity decrease. In permutation
methods, in order to estimate the importance of the m-th variable, prediction on
the test cases is computed after that all values of the variable are permuted: the
amount of variation of the error rate and of the classifier margin (the proportion
of votes for the true class minus the maximum of the proportion of votes for the
other classes) are then considered. Alternatively, we can consider the accumulated
reduction at nodes according to the criteria used at the splits, an idea from the orig-
inal CART formulation. In randomForest, the splitting criterion is the Gini index,
thus the sum of all decreases in the forest due to a given variable, normalized by
the number of trees, is used to define the Gini variable importance measure. It is
clear that this measure may reveal variables which can cause many small decreases
summing up to a large contribute to model deviance reduction. For our model with
1000 trees, in Fig. 2 we report the 4 measures of variable importance (1: error
increase; 2: average margin increase; 3: differential of margin increases; 4: Gini
decrease). Measure 2 and 4 were found the more stable. With respect to measure 4,
the most important variable is the accumulated winter precipitation before the year
of sampling, followed by altitude, profile convexity, min temperature and geological
substratum. For both measures, it seems that the climatic variables, in the short
and long period, are the key factors to predict the tick presence. This is a novel
result for Trentino. With respect to previous published models, the geological sub-
stratum is confirmed to play a key role for identifying the favorable tick habitats.
Figures 3, 4 and 5 are partial dependence plots of probability of tick presence, as
predicted by the model, as functions of the variables altitude, winter precipitation
and min temperature respectively. As found by single tree and bagging models, the
probability of tick presence drastically decreases as the altitude becomes > 1000 m.
This is not a surprising results, since it is well recognized that the temperature plays
a key role in the tick life cycle. Interestingly the short period climatic indicator, the
min temperature, is highly effective. Moreover, the winter precipitation is highly
correlated with the probability of tick presence, possibly by influencing the quantity
of larvae surviving with respect to the previous year.

The three maps in Fig. 6 are our first attempt to define a multitemporal (ac-
tually: temperature-dependent) tick risk map. The risk maps are obtained by
assuming a min temperature of 0◦ C (top), 6◦ C (middle) and 13◦ C (bottom) for
each cell, respectively. We can thus imagine to effectively use the model to estimate
the risk of a being bitten by a questing tick given the (known, as computed in GIS
from the meteorological station data, which are available on-line) mean of the min
temperature in the previous month.

4 Discussion

This model must be regarded as preliminary, as we need to provide, on the basis
of biological hypothesis being collected from experts, a complete set of potentially
relevant time-varying factors. In addition, a full methodological set-up needs to be
organized in an effective model selection protocol. However, this is the first time the
effect of accumulated winter precipitation and temperature has been demonstrated:
this randomForest prototype model was constructed in a remarkable short time,
and the connections between R, PostgreSQL and GRASS have been instrumental
to obtain this result. Linux systems were used for the computations described in
this paper, but at the present time the whole environment described in this paper
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Figure 2: Four measures of variable importance for tick presence/absence model as
measured by the randomForest predictor

is available also under MS-Windows with the support of the Cygwin tools.

Acknowledgments

We are grateful to Roberto Flor and Alessandro Soraruf for their assistance in
developing the MPA Linux Cluster. The authors thank Stéphane Dray for valuable
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Figure 4: Partial dependence plot showing the effect of the minimum temperature
variable on the classification
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Figure 6: Risk maps for exposure to Lyme borreliosis and TBE in Trentino, Italian
Alps. Ticks presence probability assuming a min temperature of 0◦ C (top), 6◦ C
(middle), 13◦ C (bottom), in the previous month
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