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Abstract

DEAL is a software package freely available for use with R. It includes
several methods for analysing data using Bayesian networks with variables
of discrete and/or continuous types but restricted to conditionally Gaussian
networks. Construction of priors for network parameters is supported and
their parameters can be learned from data using conjugate updating. The
network score is used as a metric to learn the structure of the network and
forms the basis of a heuristic search strategy. DEAL has an interface to Hugin.

1 Introduction

A Bayesian network is a graphical model that encodes the joint probability distri-
bution for a set of random variables. Bayesian networks are treated in e.g. Cowell
et al. (1999) and have found application within many fields, see Lauritzen (2003)
for a recent overview.

Here we consider Bayesian networks with mixed variables, i.e. the random vari-
ables in a network can be of both discrete and continuous types. A method for
learning the parameters and structure of such Bayesian networks has recently been
described by Bøttcher (2001). We have developed a package called DEAL, writ-
ten in R (Ihaka and Gentleman, 1996), which provides these methods for learn-
ing Bayesian networks. In particular, the package includes procedures for defin-
ing priors, estimating parameters, calculating network scores, performing heuristic
search as well as simulating data sets with a given dependency structure. The
package can be downloaded from the Comprehensive R Archive Network (CRAN)
http://cran.R-project.org/ and may be used freely for non-commercial pur-
poses.

alma@math.auc.dk
dethlef@math.auc.dk
http://cran.R-project.org/
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In Section 2 we define Bayesian networks for mixed variables. To learn a
Bayesian network, the user needs to supply a training data set and represent any
prior knowledge available as a Bayesian network. Section 3 discusses how to spec-
ify a Bayesian network in terms of a DAG and the local probability distributions.
DEAL uses the prior Bayesian network to deduce prior distributions for all param-
eters in the model. Then, this is combined with the training data to yield posterior
distributions of the parameters. The parameter learning procedure is treated in
Section 4. Section 5 describes how to learn the structure of the network. A network
score is calculated and a search strategy is employed to find the network with the
highest score. This network gives the best representation of data and we call it
the posterior network. Section 6 describes how to transfer the posterior network
to Hugin (http://www.hugin.com). The Hugin graphical user interface (GUI) can
then be used for further inference in the posterior network.

2 Bayesian Networks

Let D = (V,E) be a Directed Acyclic Graph (DAG), where V is a finite set of
nodes and E is a finite set of directed edges (arrows) between the nodes. The DAG
defines the structure of the Bayesian network. To each node v ∈ V in the graph
corresponds a random variable Xv. The set of variables associated with the graph
D is then X = (Xv)v∈V . Often, we do not distinguish between a variable Xv and
the corresponding node v. To each node v with parents pa(v), a local probability
distribution, p(xv|xpa(v)) is attached. The set of local probability distributions for
all variables in the network is P. A Bayesian network for a set of random variables
X is then the pair (D,P).

The possible lack of directed edges in D encodes conditional independencies
between the random variables X through the factorization of the joint probability
distribution,

p(x) =
∏
v∈V

p
(
xv|xpa(v)

)
.

Here, we allow Bayesian networks with both discrete and continuous variables,
as treated in Lauritzen (1992), so the set of nodes V is given by V = ∆ ∪ Γ, where
∆ and Γ are the sets of discrete and continuous nodes, respectively. The set of
variables X can then be denoted X = (Xv)v∈V = (I, Y ) = ((Iδ)δ∈∆, (Yγ)γ∈Γ),
where I and Y are the sets of discrete and continuous variables, respectively. For a
discrete variable, δ, we let Iδ denote the set of levels.

To ensure availability of exact local computation methods, we do not allow
discrete variables to have continuous parents. The joint probability distribution
then factorizes into a discrete part and a mixed part, so

p(x) = p(i, y) =
∏
δ∈∆

p
(
iδ|ipa(δ)

) ∏
γ∈Γ

p
(
yγ |ipa(γ), ypa(γ)

)
.

3 Specification of a Bayesian Network

In DEAL, a Bayesian network is represented as an object of class network. The
network object has several attributes, added or changed by methods described in

http://www.hugin.com


DSC 2003 Working Papers 3

following sections. A network is generated from a dataframe (here ksl), where the
discrete variables are specified as factors,

ksl.nw <- network(ksl)

and default it is set to the empty network (the network without any arrows). If the
option specifygraph is set to TRUE, a point and click graphical interface allows the
user to insert and delete arrows until the requested DAG is obtained.

The primary attribute of a network is the list of nodes, in the example: ksl.nw$nodes.
Each entry in the list is an object of class node representing a node in the graph,
which includes information associated with the node. Several methods for the net-
work class operate by applying an appropriate method for one or more nodes in the
list of nodes.

3.1 Specification of the Probability Distributions

The joint distribution of the random variables in a network in DEAL is a CG
distribution.

For discrete nodes, this means that the local probability distributions are unre-
stricted discrete distributions. We parameterize this as

θiδ|ipa(δ)
= p

(
iδ|ipa(δ), θδ|ipa(δ)

)
,

where θδ|ipa(δ)
= (θiδ|ipa(δ)

)iδ∈Iδ
. The parameters fulfil

∑
iδ∈Iδ

θiδ|ipa(δ)
= 1 and

0 ≤ θiδ|ipa(δ)
≤ 1.

For continuous nodes, the local probability distributions are Gaussian linear re-
gressions on the continuous parents with parameters depending on the configuration
of the discrete parents. We parameterize this as

θγ|ipa(γ)
=

(
mγ|ipa(γ)

, βγ|ipa(γ)
, σ2

γ|ipa(γ)

)
,

so that (
Yδ|ipa(γ), ypa(γ), θγ|ipa(γ)

)
∼ N

(
mγ|ipa(γ)

+ ypa(γ)βγ|ipa(γ)
, σ2

γ|ipa(γ)

)
.

A suggestion for the local probability distributions is generated and attached to
each node as the attribute prob. The suggestion can then be edited afterwards.

For a discrete variable δ, the suggested local probability distribution p(iδ|ipa(δ))
is taken to be uniform over the levels for each parent configuration, i.e.

p(iδ|ipa(δ)) = 1/Iδ.

Define zpa(γ) = (1, ypa(γ)) and let ηγ|ipa(γ)
= (mγ|ipa(γ)

, βγ|ipa(γ)
), where mγ|ipa(γ)

is the intercept and βγ|ipa(γ)
is the vector of coefficients. For a continuous variable γ,

the suggested local probability distribution N (zpa(γ)ηγ|ipa(γ)
, σ2

γ|ipa(γ)
) is determined

as a regression on the continuous parents for each configuration of the discrete
parents.
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3.2 The Joint Distribution

We now show how the joint probability distribution of a network can be calculated
from the local probability distributions.

For the discrete part of the network, the joint probability distribution is found
as

p(i) =
∏
δ∈∆

p
(
iδ|ipa(δ)

)
.

For continuous variables, the joint distribution N (Mi,Σi) is determined for each
configuration of the discrete variables by applying a sequential algorithm developed
in Shachter and Kenley (1989).

In DEAL, we can assess these quantities by

ksl.j <- jointprior(ksl.nw)

and inspect the attributes jointmu, jointsigma and jointalpha. The discrete part, p(i),
is not returned directly but may be deduced from ksl.j$jointalpha by division by
sum(ksl.j$jointalpha).

4 Parameter Learning

To estimate the parameters in the network, we use the Bayesian approach. We
encode our uncertainty about parameters θ in a prior distribution p(θ), use data d
to update this distribution, and hereby obtain the posterior distribution p(θ|d) by
using Bayes’ theorem,

p(θ|d) =
p(d|θ)p(θ)

p(d)
, θ ∈ Θ. (1)

Here Θ is the parameter space, d is a random sample from the probability distri-
bution p(x|θ) and p(d|θ) is the joint probability distribution of d, also called the
likelihood of θ. We refer to this as parameter learning or just learning.

In DEAL, we assume that the parameters associated with one variable are in-
dependent of the parameters associated with the other variables and, in addition,
that the parameters are independent for each configuration of the discrete parents,
i.e.

p(θ) =
∏
δ∈∆

∏
ipa(δ)∈Ipa(δ)

p(θδ|ipa(δ)
)
∏
γ∈Γ

∏
ipa(γ)∈Ipa(γ)

p(θγ|ipa(γ)
), (2)

We refer to (2) as parameter independence. Further, as we have assumed complete
data, the parameters stay independent given data, see Bøttcher (2001). This means
that we can learn the parameters of a node independently of the parameters of the
other nodes, i.e. we update the local parameter prior p(θv|ipa(v)

) for each node v
and each configuration of the discrete parents.

As local prior parameter distributions we use the Dirichlet distribution for the
discrete variables and the Gaussian inverse-Gamma distribution for the continuous
variables. These distributions are conjugate to observations from the respective
distributions and this ensures simple calculations of the posterior distributions.

In the next section we present an automated procedure for specifying the local
parameter priors associated with any possible DAG. The procedure is called the



DSC 2003 Working Papers 5

master prior procedure. For the mixed case it is treated in Bøttcher (2001), for the
pure discrete and the pure continuous cases it is treated in Heckerman et al. (1995)
and Geiger and Heckerman (1994), respectively.

4.1 The Master Prior Procedure

The idea in the master prior procedure is that from a given Bayesian network we
can deduce parameter priors for any possible DAG. The user just has to specify the
Bayesian network as he believes it to be. We call this network a prior Bayesian
network.

1. Specify a prior Bayesian network, i.e. a prior DAG and prior local probability
distributions. Calculate the joint prior distribution.

2. From this joint prior distribution, the marginal distribution of all parameters
in the family consisting of the node and its parents can be determined. We
call this the master prior.

3. The local parameter priors are now determined by conditioning in the master
prior distribution.

This procedure ensures parameter independence. Further, it has the property
that if a node has the same set of parents in two different networks, then the local
parameter prior for this node will be the same in the two networks. Therefore,
we only have to deduce the local parameter prior for a node given the same set of
parents once. This property is called parameter modularity.

4.2 Master Prior for Discrete Nodes

Let Ψ = (Ψi)i∈I be the parameters for the joint distribution of the discrete variables.
The joint prior parameter distribution is assumed to be a Dirichlet distribution

p(Ψ) ∼ D(α),

with hyperparameters α = (αi)i∈I . To specify this Dirichlet distribution, we need
to specify these hyperparameters. Consider the following relation for the Dirichlet
distribution,

p(i) = E(Ψi) =
αi

N
,

with N =
∑

i∈I αi. Now we use the probabilities in the prior network as an estimate
of E(Ψi), so we only need to determine N in order to calculate the parameters αi.

We determine N by using the notion of an imaginary data base. We imagine
that we have a data base of cases, from which we have updated the distribution
of Ψ out of total ignorance. The imaginary sample size of this imaginary data
base is thus N . It expresses how much confidence we have in the (in)dependencies
expressed in the prior network, see Heckerman et al. (1995).

We use this joint distribution to deduce the master prior distribution of the
family A = δ ∪ pa(δ). Let

αiA
=

∑
j:jA=iA

αj ,
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and let αA = (αiA
)iA∈IA

. Then the marginal distribution of ΨA is Dirichlet,
p(ΨA) ∼ D(αA). This is the master prior in the discrete case. The local parameter
priors can now be found by conditioning in these master prior distributions.

4.3 Master Prior for Continuous Nodes

Bøttcher (2001) derived this procedure in the mixed case. For a configuration i of
the discrete variables we let νi = ρi = αi, where αi was determined in Section 4.2.
Also, Φi = (νi − 1)Σi.

The joint parameter priors are assumed to be distributed as

p(Mi|Σi) = N
(

µi,
1
νi

Σi

)
p(Σi) = IW(ρi,Φi).

We cannot use these distributions to derive priors for other networks, so instead
we use the imaginary data base to derive local master priors.

Define the notation
ρiA∩∆ =

∑
j:jA∩∆=iA∩∆

ρj

and similarly for νiA∩∆ and ΦiA∩∆ . For the family A = γ ∪ pa(γ), the local master
prior is then found as

ΣA∩Γ|iA∩∆ ∼ IW
(
ρiA∩∆ , Φ̃A∩Γ|iA∩∆

)
MA∩Γ|iA∩∆ |ΣA∩Γ|iA∩∆ ∼ N

(
µ̄A∩Γ|iA∩∆ ,

1
νiA∩∆

ΣA∩Γ|iA∩∆

)
,

where

µ̄iA∩∆ =

∑
j:jA∩∆=iA∩∆

µjνj

νiA∩∆

Φ̃A∩Γ|iA∩∆ = ΦiA∩∆ +
∑

j:jA∩∆=iA∩∆

νj(µj − µ̄iA∩∆)(µj − µ̄iA∩∆)>.

Again, the local parameter priors can be found by conditioning in these local master
priors.

4.4 The Learning Procedure in DEAL

The parameters of the joint distribution of the variables in the network are de-
termined by the function jointprior() with the size of the imaginary data base as
optional argument. If the size is not specified, DEAL sets the size to a reasonably
small value.

ksl.prior <- jointprior(ksl.nw) ## auto set size of imaginary data base

ksl.prior <- jointprior(ksl.nw,12) ## set size of imaginary data base to 12

The parameters in the object ksl.prior may be assessed as the attributes jointalpha,
jointnu, jointrho and jointphi.

The procedure learn() determines the master prior, local parameter priors and
local parameter posteriors,
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ksl.nw <- learn(ksl.nw,ksl,ksl.prior)$nw

The result is attached to each node as the attributes condprior and condposterior.
These contain the parameters in the local prior distribution and the parameters in
the local posterior distribution, respectively.

5 Learning the Structure

In this section we will show how to learn the structure of the DAG from data.
The section is based on Bøttcher (2001), Heckerman et al. (1995) and Geiger and
Heckerman (1994).

As a measure of how well a DAG D represents the conditional independencies
between the random variables, we use the relative probability

S(D) = p(D, d) = p(d|D)p(D),

and refer to it as a network score.
The network score factorizes into a discrete part and a mixed part as

S(D) =
∏
δ∈∆

∏
ipa(δ)∈Ipa(δ)

Sδ|ipa(δ)
(D)

∏
γ∈Γ

∏
ipa(γ)∈Ipa(γ)

Sγ|ipa(γ)
(D).

Note that the network score is a product over terms involving only one node
and its parents. This property is called decomposability. It can be shown that the
network scores for two independence equivalent DAG’s are equal. This property is
called likelihood equivalence and it is a property of the master prior procedure.

In DEAL we use, for computational reasons, the logarithm of the network score.
The log network score contribution of a node is evaluated whenever the node is
learned and the log network score is updated and is stored in the score attribute of
the network.

5.1 Model Search

In principle, we could evaluate the network score for all possible DAG’s. However,
the number of possible DAG’s grows more than exponential with the number of
nodes and if the number of random variables in a network is large, it is not com-
putationally possible to calculate the network score for all the possible DAG’s. For
these situations a strategy for searching for DAG’s with high score is needed. In
DEAL, the search strategy greedy search with random restarts, see e.g. Heckerman
et al. (1995), is implemented. As a way of comparing the network scores for two
different DAG’s, D and D∗, we use the posterior odds,

p(D|d)
p(D∗|d)

=
p(D, d)
p(D∗, d)

=
p(D)
p(D∗)

× p(d|D)
p(d|D∗)

,

where p(D)/p(D∗) is the prior odds and p(d|D)/p(d|D∗) is the Bayes’ factor. At
the moment, the only option in DEAL for specifying prior distribution over DAG’s
is to let all DAG’s be equally likely, so the prior odds are always equal to one.
Therefore, we use the Bayes’ factor for comparing two different DAG’s.
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In greedy search we compare models that differ only by a single arrow, either
added, removed or reversed. In these cases, the Bayes’ factor is especially simple,
because of decomposability of the network score.

To manually assess the network score of a network (e.g. to use as initial network
in a search), use

ksl.nw <- drawnetwork(ksl.nw,ksl,ksl.prior)$nw

In the drawnetwork() procedure, it is possible to mark (ban) some of the arrows. In
the search, DEAL then disregards any DAG which contains any of these arrows,
and this reduces the search space.

The automated search algorithmis implemented in the function heuristic(). The
initial network is perturbed according to the parameter degree and the search is
performed starting with the perturbed network. The process is restarted the number
of times specified by the option restart. A network family of all visited networks is
returned.

ksl.h <- heuristic(ksl.nw,ksl,ksl.prior,restart=10,degree=5)$nw

6 Hugin Interface

A network object may be written to a file in the Hugin .net language. Hugin
(http://www.hugin.com) is commercial software for inference in Bayesian net-
works. Hugin has the ability to learn networks with only discrete networks but
cannot learn either pure continuous or mixed networks. DEAL may therefore be
used for this purpose and the result can then be transferred to Hugin. The pro-
cedure savenet() saves a network to a file. For each node, we use point estimates
of the parameters in the local probability distributions. The readnet() procedure
reads the network structure from a file but does not, however, read the probability
distributions. This is planned to be included in a future version of DEAL.

7 Example

In this section, we describe the analysis of the ksl data that has been used as
illustration throughout the paper. The data set, included in Badsberg (1995), is
from a study measuring health and social characteristics of representative samples
of Danish 70-year old people, taken in 1967 and 1984. In total, 1083 cases have
been recorded and each case contains observations on nine different variables, see
Table 1.

The purpose of our analysis is to find dependency relations between the vari-
ables. One interest is to determine which variables influence the presence or absence
of hypertension. From a medical viewpoint, it is possible that hypertension is in-
fluenced by some of the continuous variables Fev, Kol and BMI. However, in DEAL
we do not allow continuous parents of discrete nodes, so we cannot describe such a
relation. A way to overcome this problem is to treat Hyp as a continuous variable,
even though this is obviously not most natural. This is done in the analysis below.
Further, the initial data analysis indicates a transformation of BMI into log(BMI).
With these adjustments, the data set is ready for analysis in DEAL.

http://www.hugin.com
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Node index Variable Explanation
1 Fev Forced ejection volume – lung function
2 Kol Cholesterol
3 Hyp Hypertension (no/yes)
4 BMI Body Mass Index
5 Smok Smoking (no/yes)
6 Alc Alcohol consumption (seldom/frequently)
7 Work Working (yes/no)
8 Sex Gender (male/female)
9 Year Survey year (1967/1984)

Table 1: Variables in the ksl data set. The variables Fev, Kol, BMI are continuous
variables and the rest are discrete variables.

We have no prior knowledge about specific dependency relations, so for simplicity
we use the empty DAG as the prior DAG and let the probability distribution of
the discrete variables be uniform. The assessment of the probability distribution
for the continuous variables is based on data, as described in Section 3.1.

ksl.nw <- network(ksl) # specify prior network

ksl.prior <- jointprior(ksl.nw) # make joint prior distribution

We do not allow arrows into Sex and Year, as none of the other variables can
influence these variables. So we create a ban list which is attached to the network.
The ban list is a matrix with two columns. Each row contains the directed edge
that is not allowed.

## ban arrows towards Sex and Year

banlist <- matrix(c(5,5,6,6,7,7,9,

8,9,8,9,8,9,8),ncol=2)

ksl.nw$banlist <- banlist

Finally, the parameters in the network are learned and structural learning is
used with the prior DAG as starting point.

ksl.nw <- learn(ksl.nw,ksl,ksl.prior)$nw

result <- heuristic(ksl.nw,ksl,ksl.prior,restart=2,degree=10,trace=TRUE)

thebest <- result$nw[[1]]

savenet(thebest, "ksl.net")

The resulting network thebest is shown in Figure 1 and it is the network with
the highest network score among those networks that have been tried through the
search.

In the result we see for the discrete variables that Alc, Smok and Work depend
directly on Sex and Year. In addition, Smok and Work also depend on Alc. These two
arrows are, however, not causal arrows, as Smok ← Alc → Work in the given DAG
represents the same probability distribution as the relations Smok ← Alc ← Work

and Smok→ Alc→ Work, i.e. the three DAG’s are independence equivalent. Year and
Sex are independent on all variables, as specified in the ban list. For the continuous
variables all the arrows are causal arrows. We see that Fev depends directly on Year,
Sex and Smok. So given these variables, Fev is conditional independent on the rest of



DSC 2003 Working Papers 10

FEV

Kol

Hyp

logBMI

Smok
Alc

Work

Sex

Year

Figure 1: The network with the highest score, log(score) = −15957.91.

the variables. Kol depends directly on Year and Sex, and logBMI depends directly on
Kol and Sex. Given logBMI and Fev, the variable Hyp is conditionally independent on
the rest of the variables. So according to this study, hypertension can be determined
by the body mass index and the lung function forced ejection volume. However, as
Hyp is not continuous by nature, other analyses should be performed with Hyp as a
discrete variable, e.g. a logistic regression with Hyp as a response and the remaning
as explanatory variables. Such an analysis indicates that, in addition, Sex and Smok

may influence Hyp but otherwise identifies logBMI as the main predictor.

8 Discussion and Future Work

DEAL is a tool box that adds functionality to R so that Bayesian networks may
be used in conjunction with other statistical methods available in R for analysing
data. In particular, DEAL is part of the gR project, which is a newly initiated
workgroup with the aim of developing procedures in R for supporting data analysis
with graphical models, see http://www.r-project.org/gR.

In addition to methods for analysing networks with either discrete or contin-
uous variables, DEAL handles networks with mixed variables. DEAL has some
limitations and we plan to extend the package with the procedures described below.
Also, it is the intention that the procedures in DEAL will eventually be adjusted
to the other procedures developed under the gR project. The methods in DEAL
are only applicable on complete data sets and in the future we would like to incor-
porate procedures for handling data with missing values and networks with latent
variables. The criteria for comparing the different network structures in DEAL is
the BDe criteria. We intend to also incorporate the Bayesian Information Criteria
(BIC) and Akaikes Information Criteria (AIC) and let it be up to the user to de-

http://www.r-project.org/gR
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cide which criteria to use. Another possible extension of DEAL is to incorporate
procedures for specifying mixed networks, where the variance in the mixed part of
the network does not depend on the discrete parents, but the mean does. Finally,
we are working on an implementation of the greedy equivalence search (GES) algo-
rithm, see Chickering (2002), which is an algorithm for search between equivalence
classes. Asymptotically, for the size of the database tending to infinity, this al-
gorithm guarantees that the search terminates with the network with the highest
network score.
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