
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

High-Level Interface Between R and Excel

Thomas Baier∗ Erich Neuwirth†

Abstract

1 Introduction

R and Microsoft Excel have a very different user interface concept. R is a program-
ming language, whereas Excel mostly works with a direct manipulation interface.
In R one works with data objects (data frames, matrices, single values) by naming
them and referring to them by names in the program. The spreadsheet interface (as
implemented in Excel, but also in many other spreadsheet programs like Gnumeric
or OpenCalc) allows to refer to data objects by gesturing, or pointing at them. Quite
often, this is understood as a GUI (graphical user interface) concept, but that is
not correct. The gesturing spreadsheet interface predates graphical user interfaces.
Visicalc, the very first spreadsheet program, was a character mode application and
already implemented this approach.

Combining R and Excel brings together these two very different user interface
worlds, and therefore, besides technical implementation issues, one also has to be
very careful when combining radically different user interaction concepts. More
information how the spreadsheet interface is very useful for statistics can be found
in [3]

We implemented 2 different philosophies. In one package, R is embedded as an
extension of Excel. The user stays within the spreadsheet interaction model and
gets additional functionality. One might say this is a statistically enriched version
of Excel.

∗Department of Statistics, Vienna University of Technology
†Department of Statistics and Decision Support Systems, University of Vienna

DSC 2003 Working Papers 2

In the second package, Excel is made accessible from within R. The user enters
R code, and some of the R commands start Excel and allow to enter or edit data in
Excel, or some results of statistical computations in R into spreadsheet ranges. One
might say that Excel becomes accessible as a scratchpad for R data and R output.

Let us study these two approaches in more detail.

2 Excel as the host

Extending the functionality of Excel usually is done in two different ways. One can
either add new menus and menu items offering operations on data in the spread-
sheets, or one can define new functions which can be used in cells formulas.

The important difference is that menu operations produce static output, whereas
in-cell function will update automatically when the input cells for a formula change.
For every spreadsheet, Excel internally builds the dependency tree and whenever
any cell is changed, all cells depending on that cell will automatically be recalcu-
lated. Here is an example of the most simple form of using R functions in Excel
(through the RExcel addon package):

RApply("pchisq",30,1)

This formula computes the probability of the chisquare distribution for the given
values.

Since in our package R is fully integrated into Excel, the second and the third
argument in this call may be references to cells. Using this mechanism, we can
calculate the power of a statistical test in an Excel sheet. Excel has some statisti-
cal distribution functions including the chisquare distribution in the Data Analysis
Toolkit, but only the central version. Since R has the noncentral distribution func-
tion the advantage of getting R to work within Excel is immediate: we can calculate
the power of chisquare tests in Excel.

The example supplied with our RExcel package calculates the power function
of a chisquare test for a Roulette wheel with unequal probabilities when testing for
equal probabilities.

DSC 2003 Working Papers 3

Excel gives a very convenient interactive way of doing what-if analyses, for
example by changing parameters of a statistical model.

RApply turns any R functions into an Excel function. Sometimes we might want
to hide the R functions completely from the user. We can do this by putting a VBA
wrapper around the call to R.

In our case, we can define

Function ncchidist(x, deg_free, noncent)
ncchidist=RApply("pchisq",x, deg_free, noncent)
End Function

Function ncchiinv(prob, deg_free, noncent)
ncchiinv=RApply("qchisq", prob, deg_free, noncent)
End Function

These two functions can then be used like any other Excel function, and using
this mechanism we can make any set of R functions (including ones defined in user
code) accessible in Excel transparently.

The software connection between R and Excel is implemented by the making R
a COM server. The COM server has been described in [2]

This can be done in two different ways, which will be discussed later. At first,
we will have a look at the interface.

The complete interface for using R in spreadsheet functions called directly in
spreadsheet cells in Excel is implemented with the following functions:

DSC 2003 Working Papers 4

Name Description
RApply apply an R function to the given arguments
REval evaluate an R expression given as a string
RVarSet Assign an R expression given as a string to an R

variable
RPut Assign a value from an Excel range to an R variable
RStrPut Assign a value from an Excel range to an R variable

as a string
RProc Execute some R commands

Let us discuss these new Excel functions briefly:
RApply and REval evaluate R function calls and put the result in a cell. The differ-
ence is that RApply expects the function as the first argument and the arguments
for the function as the remaining arguments whereas REval needs a string which is
a complete R function call including the arguments as its argument. Typical uses
are RApply("sin",1) and RExp("sin(1)"). In both cases, all the arguments can
be references to other spreadsheet cells.

Since RApply performs a function call with a function as the first argument to
RApply and the arguments to this function as the remaining arguments, and since
R is a full functional language with functions as first class objects, one also can
make function calls like RApply("function(x)x*x",2) and again, the arguments
for RApply can be cell references to other spreadsheet cells. This we, we can define
R function on the spot within a spreadsheet, and we even do not need to name
them.

For functions with more code, however, being able to define named function is
quite useful. RProc takes a spreadsheet columnar spreadsheet range and executes
the text in then range as R code. Writing a function definition in the usual way

myfun<-function(x){
x*x
}

and calling RProc with this range as argument will define function myfun in R.
Then, RApply can use myfun as its fist argument.

This additional mechanism introduces an new problem: recalculation order.
For every spreadsheet, R has a dependency table so when any cell in changed, it
recalculates all the cell depending on this cell. If in some cell in our spreadsheet
we use a function defined using RProc in another cell, Excel does not know that
the function definition has to be evaluated before the function is evaluated. We
will discuss this problems immediately after we have looked at the other interface
functions.

RVarSet has two arguments, a variable name and a string expression. The string
expression must be a valid R expression and the value of this expression is assigned
to the variable. The string expression can be constructed by combining contents of
spreadsheet cells with Excel’s string functions. RVarSet(A1&"*"&A2) would use R
to multiply the contents of cell A1 and A2 in a spreadsheet.

RPut and RStrPut Assign a value from an Excel range to an R variable. RPut
will assign a numeric value if all the cells referenced in the second argument contain

DSC 2003 Working Papers 5

numeric values, RStrPut will enforce that the assigned values in R are string values.
If the range consist of only the assigned object will be a scalar, otherwise the object
will be either a numeric or a string matrix.

Now, let us discuss the dependency and recalculation order issue raised when
discussing RProc. We introduce what we might call artificial dependencies. REval,
RProc, RVarSet, RPut, and RStrPut all have a fixed number of arguments for normal
use. They will take additional arguments. These arguments will be evaluated within
Excel before the operation itself is performed. If the first argument of REval is a
function call for an R function defined in some other cell(s) of the spreadsheet
(possibly using RProc), a second argument to REval referencing the cell where the
definition is executed (this is the cell with the spreadsheet formula containing RProc,
not the cell(s) with the code defining the function), will enforce that the definition
is performed before the function is evaluated. This is especially important when
the function definition is changed. In that case, without indicating the dependency,
the evaluation call might use an obsolete definition of a function. Things are a little
bit more complicated for RApply. RApply takes a variable number of arguments.
Therefore, we need an indicator to separate real arguments (the ones used in the R
function call) from arguments used only to indicate dependencies. If an argument
to RApply is the string "depends", then all arguments to RApply will not be used
in the R function call created by RApply.

Currently, our implementation runs reasonably well for the R (D)COM server
described in [?]. This way, R is imbedded invisibly into a spreadsheet application,
there is no GUI or command line interface to the R instance doing the computational
work for Excel. This R instance can only be accessed from within Excel.

A second implementation make it possible to access an instance of R that such
that Excel and a command line or GUI version of R share name, data, and code
space, providing access to the R command line at the same time as to the spread-
sheet interface. This allows to use the strengths of both office applications and R
side by side on the Windows platform. Thomas Baier’s paper [1] gives the details
of this implementations.

Instead of using spreadsheet functions as the main interface between R and
Excel we also can use VBA (the programming language embedded in Exel). This
interface (it is the first one in our project of combining R and Excel is described in
[2]. The interface consist of 5 VBA procedures:

Name Description
RInterface.StartRServer starts a new R server instance
RInterface.StopRServer stops the current R server instance
RInterface.RRun executes a line of R code
RInterface.PutArray transfers an array from Excel to R
RInterface.GetArray transfers an array from R to Excel

Using these VBA procedures it is possible to write VBA programs with full
access to R. There is a very important difference between embedding R into Excel
with spreadsheet functions and with VBA procedures: when the function interface is
used the execution of R functions becomes part of Excel’s automatic recalculation.
When the VBA-procedural interface is used, only the VBA programs (possibly

DSC 2003 Working Papers 6

triggered by menu items and buttons) start the execution of R code. In the standard
case this means that R code is only executed when the user presses a button or
selects a menu item.

Here is a short example

Sub Demo()
Call RInterface.StartRServer
Call RInterface.RRun("z<-rnorm(60)")
Call RInterface.RRun("dim(z)<-c(10,6)")
Call RInterface.GetArray("z", Range("Sheet1!A19"))
Call RInterface.StopRServer
End Sub

This procedure creates a vector of 60 random numbers, changes the vector into a
10x6 matrix and then transfers the matrix to an Excel range. It can be attached
to a button or menu item, and then the user can trigger this operation, effectively
creating a matrix of random numbers produced by R in Excel.

3 R as the host

The other way of embedding is using R as the COM client and, say, Excel as
the COM server. In this case, “R is in control”, meaning that the user mainly
interacts with the R command line. A relatively straightforward use would be calling
Excel from R to get some data which are already available as an Excel spreadsheet,
then doing complex statistical analyses, and finally putting some reports (possibly
including graphics) back into Excel. In theory, this can also be done using our
previously described case where R acts as COM server. The main difference is that
in the first framework the user works with Excel enhanced by R, and in the second
case works with R with the additional possibility of accessing Excel from within R.

Excel, in this case, just is a representative for any application exposing it’s func-
tionality as a COM server. Especially, this applies to all applications in Microsoft’s
Office family of products. In our discussion, R is responsible for the computational
functionality, while the Office suite is used for user input and output/presentation.

Using R’c COM client library rcom, one can access any COM server’s functions
as long as they are provided in a form conforming to OLE automation. In addition
to this low-level mechanism, we are providing an R package especially tailored to
the basic requirements for interaction with Microsoft Excel. The goal of this effort
is to simplify the most common applications, while still providing full access to all
functionality.

We may enhance R’s GUI interface by adding additional menu items. These
can used for easy integration of foreign functionality into R’s command-line driven
GUI. As an example, basic integration of part of the Microsoft Office suite is shown.

Excel functionality can be implemented in R rather smoothly by adding menu
functions for transferring data. For this reason, only the integration of Microsoft
Excel is discussed in more detail for this part by utilizing the rexcel high level
access package.

DSC 2003 Working Papers 7

3.1 Accessing Excel, PowerPoint and Word

Even when using R as the primary workbench for data analysis, in the Windows
world, presentations of output are expected to be done using Microsoft’s Office suite
of programs, as well as input data is many times available in e.g. Microsoft Excel
file formats.

Sometimes it can be convenient to drive PowerPoint or Word from the R com-
mand line or get data from an Excel spreadsheet. As all Office applications expose
their functionality as an object model via COM, the rcom package can be used for
access. The following code shows some R functions to start up and show Excel,
PowerPoint and Word:

to be reworked. doesn’t really work in generic case!
office.get<-function(app,handle) {
if(!identical(handle,NULL)) return(office.show(handle));
handle<<-com.object.get(app);
if(identical(handle,NULL)) handle<<-com.object.create(app);
return(office.show(handle));

}
office.show<-function(handle) {
if(!identical(handle,NULL)) {
com.property.set(handle,"Visible",TRUE);

}
}

To provide some basic integration into R’s user interface, an additional pack-
age is in development, which allows to add new menu items into the R workbench.
This package—macros—is used to associate this function with user interface ele-
ments. Adding a new pull-down menu Office with menu items for starting Excel,
PowerPoint and Word are achieved by the following code:

menu.create("Office")
menu.create.item("Start Excel","Office",

"office.start(\"Excel.Application\",excel.handle)")
menu.create.item("Start PowerPoint","Office",

"office.start(\"PowerPoint.Application\",excel.handle)")
menu.create.item("Start Word","Office",

"office.start(\"Word.Application\",excel.handle)")

As well as starting these applications and manipulating properties it is easy as
well to call functionality and transfer data between R and Office.

3.2 Controlling Excel: rexcel

The object model of many applications is very complex and requires the user to
extensively study help files and manuals. For many cases, only a small subset of all
functionality is required.

DSC 2003 Working Papers 8

The 90:10 rule also applies to the requirements of users and their applications:
90% of your needs are covered by only 10% of the functionality.

For our previous work we have been focusing on Microsoft Excel as a very useful
medium for data entry and output. Therefore, we decided to provide an easy-to-use
interface to a small subset of functions in Excel which can easily be integrated into
the R GUI and R programs.

What we have been focusing on is providing access to

� getting access to Excel itself (either a current instance or starting a new
window)

� exchanging Excel’s current selection with R (reading the selection into an R
variable or writing a variable to the current selection)

� exchange any rectangular area in the spreadsheet with R

In the case of data transfer, the functions are trimmed to either return a value
(e.g. a data vector or matrix) or to provide access to the Excel COM object itself.

The following functions have been implemented:
Name Description
excel.get, excel.create return the current instance of Microsoft

Excel or create a new instance
excel.show show the Excel window
excel.selection.value get selection value
excel.selection.value.set set selection value
excel.selection.get get selection object
excel.cell.value get cell value
excel.cell.value.set set cell value
excel.cell.get get cell object
excel.range.value get range value
excel.range.value.set set range value
excel.range.get get range object

Using this functions, you can easily transfer data between R and Excel. The
following example shows how to store the specified cell range into R’s variable rng1.

get range "A1" to "D7" and store the matrix into rng1
rng1<-excel.range.value("A1:D7")

add 5 to every element and store back
excel.range.value.set("A1:D7",rng1+5)

In the above example, the currently active instance of Excel is used automati-
cally. If none is runnig, a new Excel is created (see documentation for excel.get()
and excel.range.value() for more information).

Using the COM client package, we have shown, that R can control the Mi-
crosoft’s Office suite of applications. For easy access to Excel’s basic input and
output facilities we can use the additional package rexcel, for the not so common

DSC 2003 Working Papers 9

operations, you have to fall back to rcom and directly access the COM interfaces
provided by Excel. The COM level is also the interface currently supported for the
other applications of the Office suite.

As rexcel builds on the low-level functionality provided by rcom and is com-
pletely written in R itself, one can easily extend the package or seamlessly itegrate
similar functionality for other applications.

In the next section, we will show an example giving a better idea of the wide
range of applications of R’s office integration.

3.3 Excel → R → PowerPoint

Office integration not only means, that R can get data from Microsoft Excel or
pop up another application. In fact, R can completely control any of the Office
applications—at least as far as Offices allows this.

In a very simple example we will show how to use Excel as a medium for user
input and PowerPoint to show the results of the computations done in R.

Our simple application will use the χ2-test to compute the probability of finding
out whether a given roulette table has been manipulated. We will use R to do the
computations and show the correlation between the number of observations and the
probability of discovery in a PowerPoint presentation.

Here, R will read the selection from Excel. The selection shall be a matrix with
two columns and 37 rows, the first column representing probabilities of the numbers
0 to 36 for a fair roulette table. The second column represents the probabilities for
the manipulated roulette.

We will use some simple functions for the computations:

noncent<-function(n,equal,manipulated)
{
return(n * sum(((manipulated - equal) ** 2) / equal));

}
power<-function(n,equal,manipulated,dof,alpha)
{
nc<-noncent(n,equal,manipulated);
crit<-qchisq(alpha,dof,0);
return(1 - pchisq(crit,dof,nc));

}
do.test<-function(alpha,report)
{
selection<-excel.selection.value()
observations<-c(100,200,500,1000,2000,5000,10000,

20000,50000,100000,200000,500000,1000000);
probabilities<-power(observations,selection[,1],selection[,2],

36,alpha);
eval(call(report,observations,probabilities));

}

DSC 2003 Working Papers 10

The front-end for the application code is do.test. This function takes the α
value and a reporting function as its parameters. As a reporting function, one
can e.g. use the plot() function. Adding the functionality to the main menu for
different α values:

menu.create("ChiSquare-Test");
menu.create.item("alpha = 0.75","ChiSquare-Test",

"do.test(0.75,\"plot\")");
menu.create.item("alpha = 0.80","ChiSquare-Test",

"do.test(0.80,\"plot\")");
menu.create.item("alpha = 0.85","ChiSquare-Test",

"do.test(0.85,\"plot\")");
menu.create.item("alpha = 0.90","ChiSquare-Test",

"do.test(0.90,\"plot\")");
menu.create.item("alpha = 0.95","ChiSquare-Test",

"do.test(0.95,\"plot\")");
menu.create.item("alpha = 0.97","ChiSquare-Test",

"do.test(0.97,\"plot\")");

Instead of using plot() for presenting the results, we will use Microsoft Power-
Point as an output device. A report function compatible with the above parameter
list is shown below:

ppoint.report<-function(n,probs)
{
start PowerPoint and create an presentation with a single slide
ppt<-com.object.create("PowerPoint.Application")
pres<-com.invoke(com.property.get(ppt,"Presentations"),"Add")
slides<-com.property.get(pres,"Slides")
type 12 is empty slide, 8 is chart, 2 is title+enumeration
slide<-com.invoke(slides,"Add",2,1)

set the title of the slide
title<-com.property.get(com.property.get(slide,"Shapes"),"Title")
rng<-com.property.get(com.property.get(title,"TextFrame"),

"TextRange")
com.property.set(rng,"Text","Roulette: Chi Square-Test")

add analysis results to slide
enumshape<-com.invoke(com.property.get(slide,"Shapes"),"Item",2)
rng<-com.property.get(com.property.get(enumshape,"TextFrame"),

"TextRange")
txt<-paste(n,rep("observations\tp =",length(probs)),probs,

collapse="\r");
com.property.set(rng,"Text",txt);
com.property.set(com.property.get(rng,"Font"),"Size",16)

DSC 2003 Working Papers 11

show the results
com.property.set(ppt,"Visible",TRUE)
com.invoke(com.property.get(pres,"SlideShowSettings"),"Run")

}

And of course, this reporting function has to be specified when creating the
menu items, e.g.

...
menu.create.item("alpha = 0.75","ChiSquare-Test",

"do.test(0.75,\"ppoint.report\")");
...

This provides a very simple data reporting facility. The user chooses a menu
item in the R application window, R gets the data from Excel, computes the results
and puts the report into PowerPoint. After the results have been shown, you can
simply save the resulting presentation to disk for later use.

4 Comparing the philosophies

In addition to embedding an invisible R into a spreadsheet application, it is also
possible to run R in parallel to the spreadsheet, providing access to the R command
line at the same time as to the spreadsheet interface. This allows to use the strenghts
of both office applications and R side by side on the Windows platform.

References

[1] Thomas Baier. Embedding R in standard software, and the other way
round. In Kurt Hornik and Friedrich Leisch, editors, DSC 2003 Proceed-
ings of the 3rd International Workshop on Distributed Statistical Computing,
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/, 2003.

[2] Thomas Baier and Erich Neuwirth. Embedding R in standard software, and
the other way round. In Kurt Hornik and Friedrich Leisch, editors, DSC 2001
Proceedings of the 2nd International Workshop on Distributed Statistical Com-
puting, http://www.ci.tuwien.ac.at/Conferences/DSC-2001/, 2001. ISSN: 1609-
395X.

[3] Erich Neuwirth. Spreadsheets as tools for statistical computing and statistics
education. In Jelke G. Bethlehem and Peter G. M. Van Der Heijden, editors,
Compstat, Proceedings in Computational Statistics, 2000.

	Introduction
	Excel as the host
	R as the host
	Accessing Excel, PowerPoint and Word
	Controlling Excel: rexcel
	Excel R PowerPoint

	Comparing the philosophies

