
DSC 2003 Working Papers
(Draft Versions)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

Draft:

More complex graph computations

for undirected graphical models

by the CoCo bundle for R

Jens Henrik Badsberg
Danish Institute of Agricultural Sciences

JensHenrik.Badsberg@agrsci.dk

Introduction

CoCo is a program for estimation, test and model search among hierarchical inter-
action models for large complete contingency tables. The name CoCo is derivated
of “Co”mplete “Co”ntingency tables, since the initial program could only handle
complete contingency tables, but the program has been enhanced to handle also
incomplete tables and latest also graphical models with continuous variables.

CoCo works especially efficiently on graphical models, and some of the commands
are designed to handle graphical models.

Graphical models are log-linear interaction models for contingency tables that
can be represented by a simple undirected graph with as many vertices as the table
has dimension. Further all these models can be given an interpretation in terms of
conditional independence and the interpretation can be read directly off the graph
in the form of a Markov property. The class of graphical model is a proper subclass
of the hierarchical models, but the class strictly contains the decomposable models,
e.g., Haberman (1972). See Darroch et al. (1980) for how graphical models are
defined by the close connection between the theory of Markov fields and that of
log-linear interaction models for contingency tables.

CoCo is a program designed to perform estimation and tests in large contingency



DSC 2003 Working Papers 2

tables. By using graph-theoretical results the hierarchical mixed interaction models
are decomposed. The iterative algorithm is not used on the full table, but only on
the non-decomposable irreducible components. Furthermore, the optimized version
of the IPS-algorithm of Jiroušek (1991) is used on these non-decomposable discrete
atoms.

Besides incomplete tables also tables with incomplete observations can be han-
dled in CoCo, e.g. by the EM algorithm. Exact tests between any two nested
decomposable discrete models can be computed.

The CoCo bundle for R is available from http://www.jbs.agrsci.dk/Biometry
/Software-Datasets/CoCo/CoCo.1.5/. The package for handling models with
both discrete and continuous variables are currently called CoCoCg. This mod-
ule will be included in the next version of the CoCo bundle made available later this
year. Some of the function names used in the example section this version of the
paper might be changed in later versions of the CoCo bundle.

1 Notation

Graphs

We shall consider simple undirected graphs G = (V (G), E(G)) with vertices V (G) ⊆
∆ ∪ Γ and edges E(G). A graph is simple if it does not contain multiple edges and
loops, that is, no identical edges and no edges with identical vertices. We say that
two vertices in a graph are adjacent or neighbours, if there is an edge between them.
If v is adjacent to w, that is, {v, w} ∈ E(G), we will also write v ∼ w.

We shall consider graphs with two types of vertices. ∆ ⊆ V (G) is the set of
vertices, we shall call marked for discrete variables, and Γ = V (G)\∆ contains the
unmarked vertices for continuous variables.

A path in G between vertices v, w ∈ V (G) is a sequence v(0), v(1), · · · , v(n) ∈ V (G)
with (v, w) = (v(0), v(n)) and {v(i−1), v(i)} ∈ E(G) for i = 1, 2, · · · , n. A cycle
or n-cycle in G is a sequence v(1), v(2), · · · , v(n) ∈ V (G) with {v(n), v(1)} ∈ E(G)
and {v(i), v(i+1)} ∈ E(G) for i = 1, 2, · · · , n − 1. A chord of a cycle (or path)
v(1), v(2), · · · , v(n)∈ V (G) is two vertices v(i) and v(j) with {v(i), v(j)} ∈ E(G), i < j
and i + 1 6= j. Two vertex sets a ⊆ V (G) and b ⊆ V (G) are separated by c ⊆ V (G),
if every path from a vertex in a to a vertex in b contains a vertex from c.

We define the boundary of a subset a of ∆∪Γ, written ∂a, as those vertices that
are not in a but are adjacent to some vertex in a. A set a is called complete, if all
possible edges between the vertices of a are present in the graph. If a is complete and
a is not a subset of another complete subset of the graph, then a is called a clique.
A vertex v is perfect, if the set ∂v of neighbours of v is complete. The subgraph
induced by a subset A ⊆ V (G) of the vertices of a graph G = (V (G), E(G)) is the
graph GA = (A,EA), where EA ⊆ E(G) are the edges {v, w} ∈ E(G) with both
v ∈ A and w ∈ A. The connected components of a graph are a partitioning of the
graph into subgraphs such that two vertices are in the same connected component,
if and only if there is a path between the vertices. If a graph only contains one
connected component, then the graph is connected. If a graph is connected and



DSC 2003 Working Papers 3

contains no cycles then the graph is a tree.
Connected components, shortests paths (paths without chords) and cutsets (sub-

sets of vertices separating two given subsets of the graph) can be found by re-
spectively Breadth-first or Depth-first search, Dijkstra algorithm and Ford-Fulkersons
algorithm for the maximum flow problem.

Definition 1 Two subsets a and b of G form a decomposition of a graph G =
(V (G), E(G)), if a∪ b = V (G), a \ b 6= ∅, b \ a 6= ∅, a \ b and b \ a are separated by
a ∩ b in the graph, and a ∩ b is a complete subset.

In words, for the 2-section graph of a graphical model, two subgraphs of the
2-section graph form a decomposition of the graph with respect to a subset c of the
vertices of the graph, if the graph is the union of two subgraphs and the intersection
c between the two subgraphs is complete. The set c is a clique separator. The graph
is decomposed into the two subgraphs. The subgraphs may be further decomposed
into subgraphs.

A clique separator C is called admissible for G = (V (G), E(G)) if there are at
least two different connected components GA and GB of G with ∂A = ∂B = C, that
is, each vertex of C is adjacent to at least one vertex of both A and B. C ⊆ V (G)
is a minimal separator of v, w ∈ V (G), if C, but no proper subset of C, separates
{v} and {w} in G. C is a relative minimal separator for G, if there are vertices
v, w ∈ V (G) such that C is a minimal separator for v and w. It is obvious that a
separator is a relative minimal separator if and only if the separator is an admissible
separator.

The decomposition formed by a and b is strong, if at least one of the three
conditions a ∩ b ⊆ ∆, a \ b ⊆ Γ, b \ a ⊆ Γ holds.

Definition 2 If a graph and its subgraphs can be decomposed recursively until all
the subgraphs are complete, then the graph is decomposable.

Note that a graph may be decomposed without being decomposable. We say
that the graph is reducible, if it can be decomposed, that is, its vertex set contains
a clique separator, otherwise the graph is said to be irreducible, a prime or a non-
separable atom. A subgraph GA of a graph G is an irreducible component or a
maximal prime subgraph of G, if GA is irreducible and GB is reducible for all B
with A ⊂ B ⊆ V (G).

A graph is triangulated, if it contains no cycles of length greater than 3 without a
chord. It is a well-known fact Lauritzen et al. (1984) that the decomposable graphs
are the triangulated graphs, the chordal graphs or rigid circuit graphs.

Vertex Elimination Orderings and the Fill-In Graph

An elimination ordering π of the vertices V of a graph G = (V,E) with |V | = n is a
bijection π : V ↔ {1, 2, · · · , n}. Often we will write the ordering π as {v1, v2, · · · , vn}
with the index i of the vertex vi the order of the vertex, π(vi) = i. If π(v) < π(w),
that is, the order of v is less than the order of w, then we say that v is less than w,
and write v < w.



DSC 2003 Working Papers 4

The fill-in Fπ caused by the ordering π is the set of edges defined as follows:

Fπ = {{v, w}| v 6= w, there is no edge between v and w, and there
is a path v = v(1), v(2), · · · , v(k) = w such that (1)
π(v(i)) < min{π(v), π(w)} for i = 2, 3, · · · , k − 1}.

An elimination ordering π is perfect, if the fill-in caused by the ordering is empty,
minimum, if |Fπ| is minimum over all possible orderings, and minimal, if there
is no ordering σ such that Fσ ⊂ Fπ. It is a well known fact, see for example
Rose et al. (1976), that a graph has a perfect vertex ordering if and only if the
graph is decomposable, and that an ordering {v1, v2, · · · , vn} of the vertices v(i), i =
1, 2, · · · , n, in a graph is perfect if ∂vi ∩ {vi, vi+1, · · · , vn} is complete for each vertex
vi, i = 1, 2, · · · , n, in the graph, that is, if and only if vi is perfect in the subgraph
induced by {vi, vi+1, · · · , vn}. The fill-in graph of a graph G = (V (G), E(G)) for an
ordering π is the graph F = (V (G), E(G)∪Fπ) with the fill-in Fπ added. Since the
fill-in graph for the ordering π of the fill-in graph F = (V (G), E(G)∪Fπ) is empty,
the fill-in graph is decomposable. If v is adjacent to w in the fill-in graph F for an
ordering π, that is, {v, w} ∈ E(G) ∪ Fπ, we write v ∼π w. The boundary ∂πv are
the vertices adjacent to v in the fill-in graph.

The set ∂vi ∩ {vi+1, vi+2, · · · , vn} of vertices following vi and adjacent to vi is
called the monotone adjacency set. By C(vi) we will denote the monotone adjacency
set in the fill-in graph:

C(vi) = ∂πvi ∩ {vi+1, vi+2, · · · , vn}. (2)

Maximum Cardinality Search

The algorithm Maximum Cardinality Search of Tarjan and Yannakakis (1984) finds
an ordering of the vertices in a graph in O(e + n) time.

In Maximum Cardinality Search the vertices are numbered from n to 1 in decreas-
ing order as follows. Give an arbitrary vertex the ordering n. As the next vertex
to give a number, select the vertex adjacent to the highest number of previously
numbered vertices, breaking ties arbitrarily.

The ordering Max-Card found is a perfect vertex elimination ordering, if the
graph is decomposable. With the ordering found, decomposability can be checked in
time O(e+n) by the algorithm Test for Zero Fill-In of the same paper. The ordering
Max-Card can be used to find a closed form expression for maximum likelihood
estimates in decomposable log-linear models, Badsberg (1996b).

Minimal Vertex Elimination Orderings

In Tarjan (1985) an algorithm for finding the clique separators of a graph in a
total time of O(ne + n2) is presented. Leimer (1993) presents a version of this
algorithm that is optimal in the sense that the separators are minimal and that the
graph is only decomposed into the irreducible components. These algorithms and
the algorithm of Badsberg (1996b) can by used to reduce the computations needed
to find the maximum likelihood estimates of non-decomposable log-linear models.



DSC 2003 Working Papers 5

In the above decomposition algorithms the vertices of the graph has to be visited
according to a minimal vertex elimination ordering. The ordering produced by the
algorithm Maximum Cardinality Search of the previous section will not do, since this
ordering is not necessary minimal for a non-decomposable graph.

The minimal ordering of the vertices can be found by the algorithm Lex M
of Rose et al. (1976) in O(ne). In Lex M the vertices are numbered from n to 1
in decreasing order using a modified lexicographical search, where lexicographical
search is defined as follows. For each unnumbered vertex v, maintain a label, a list
of the numbers of the numbered vertices adjacent to v, with the numbers in each list
arranged in decreasing order. For the next vertex to number, select the vertex whose
label is lexicographically the greatest, breaking ties arbitrarily. Although somewhat
complicated, lexicographical search can be implemented to run in O(e+n) time Rose
et al. (1976), and the modified version of lexicographical search used in Lex M to
find the minimal ordering runs in O(ne) time.

To find the minimal ordering by Lex M a lexicographic ordering scheme which is
a special type of Breadth-first search is used. The vertices of the graph are numbered
from n to 1. During the search, each vertex v has an associated label consisting of
a set of numbers selected from {1, 2, · · · , n}, ordered in decreasing order. Given two
labels L1 = [p1, p2, · · · , pk] and L2 = [q1, q2, · · · , ql], we define L1 < L2 if, for some
j, pi = qi for i = 1, 2, · · · , j − 1 and pj < qj , or if pi = qi for i = 1, 2, · · · , k and
k < l. L1 = L2 if k = l and pi = qi for 1 ≤ i ≤ l.

First the empty label is assigned to all the vertices. Then the vertices are ordered
in decreasing order as follows. The vertex with the largest label is picked, breaking
ties arbitrary. (A random vertex is numbered first with the order n.) After assigning
the order i to the vertex v the label of each unnumbered vertex w such that there
is a chain [v = v1, v2, · · · , vk+1 = w] with vj unnumbered and label(vj) < label(w)
for j = 2, 3, · · · , k the number i is added to the label label(w) of w. After updating
the labels of unnumbered vertices, the unnumbered vertex with the largest label is
selected as the next vertex to order, labels are updated, etc. until the last vertex is
assigned the order 1.

RIP orderings

If a system ζ = {R1, · · · , RJ} of J , J ≥ 1, subsets Rj ⊆ ∆ are ordered in a sequence
(R1, · · · , RJ) such that

∀ j = 2, · · · , J ∃ k, 1 ≤ k < j : (Rj ∩
j−1⋃
l=1

Rl) ⊆ Rk, (3)

then the sequence (R1, · · · , RJ) fulfills the running intersection property.
In particular, if Rj , j = 1, · · · , J , are the cliques of a graph, then the sequence
(R1, · · · , RJ) fulfills the running intersection property, if the cliques in the sequence
are ordered such that for each clique the intersection between the clique and the
union of previous cliques is a subset of a previous clique. A graph is decomposable,
if and only if such an ordering of the cliques exists.



DSC 2003 Working Papers 6

Junction trees

Let M be a finite collection of subsets of a set ∆, e.g., a generating class. The
junction graph J(M) = (M, E(J)) for M is a graph with vertices V (J) = M the
elements of M and edges E(J) = {{ci, cj} ⊆ M| ci ∩ cj 6= ∅}. In other words, there
is an edge between two nodes of the junction graph, if the intersection of the two
vertex sets of the two nodes is not empty.

Any spanning tree for J(M) will be called a junction tree for J(M), if for any
pair ci, cj ∈ M all vertices on the path between ci and cj contain ci ∩ cj , see also
Jensen (1988). If J(M) is not connected, then the graph J(M) does not have
a junction tree, but each connected component of J(M) may have. A connected
component of a graph, that is the generating class consisting of the cliques of the
connected component, has a junction tree, if and only if the connected component
is decomposable, Jensen (1988).

A junction tree can be constructed from a sequence (R1, · · · , RJ) fulfilling the
running intersection property: the tree is given vertices (R1, · · · , RJ), and for j =
2, · · · , J the vertex Rj is connected to one of the vertices Rk fulfilling (3). Also a
sequence fulfilling the running intersection property can be read off a junction tree:
Pick any vertex as root, and then traverse the tree either Breadth-first or Depth-first
to visit all vertices of the junction tree and let Ri be the elements of the i-th visited
node of the tree.

The Index

In decomposable log-linear models for contingency tables, the problem of finding a
closed form expression of the maximum likelihood estimates is a matter of comput-
ing the index or the adjusted replication number for subsets of the graph associated
with the model Darroch et al. (1980).

To define the index we have to define the pieces of the graph relative to some
subset of the vertices. Let G = (V (G), E(G)) be a connected graph and d ⊆ E(G)
be a complete subset. The pieces of G relative to d are defined as follows. Remove
d from G and form the subgraph GV (G)\d with vertices V (G) \ d and edges which
are those in E(G) that do not involve vertices in d. GV (G)\d now has one or more
connected components At, t ∈ T , say. Let Gt be the subgraph of G obtained be
rejoining d to the subgraph At, that is, Gt has the vertex set At∪d and edges which
are those in E(G) that only involve vertices in At ∪ d. Gt, for all t ∈ T , are the
pieces of G relative to d.

Then for each complete subset d of E(G) the index ν(d) is defined as follows:

ν(d) = 1− the number of pieces of G relative to d in which d is not a clique. (4)

If a graph G with index νG is decomposed into the two subgraphs A and B, and
these are both connected graphs with indices νA and νB and with vertex sets a and
b respectively, then the indices νA, νB and νG will satisfy

νG(d) =
{

νA(d) + νB(d) for d 6= a ∩ b,
νA(d) + νB(d)− 1 for d = a ∩ b.

(5)



DSC 2003 Working Papers 7

This is Lemma 8 of Lauritzen et al. (1984).
In this paper we will for every (complete) subset d of the vertices of a decom-

posable graph compute the index defined by the sum of the indices of the connected
components of the graph. If d is not a subset of the vertices of a connected com-
ponent, then ν(d) = 0. For d = ∅ we have ν(d) = ν(∅) = 1 − |T |, where |T | is the
number of connected components of the graph.

Hypergraphs

Restating, a generating class is a set of subsets of a finite set such that no element
in the generating class is a subset of another element.

The generating class H of a model may be viewed as the edges of a generating
class hypergraph, in this paper called a hypergraph: a graph H = (V(H),H) with
vertices, nodes, V (H) ⊆ ∆∪Γ the variables of the model and edges H the maximal
permissible interaction terms between variables.

The edges H are a generating class and are not only subsets of cardinality 2 of
the variables, but subsets of any size of the set of vertices.

The 2-section graph of a hypergraphH = (V(H),H) is a simple undirected graph
GH = (V (GH), E(GH)) with vertices V (GH) = V (H) and edges E(GH) = {{v, w}|
∃c ∈ H : {v,w} ⊆ c}. To distinguish the edges of the hypergraph from the edges
of the 2-section graph, we call the edges of the hypergraph, that is, the elements of
the generating class, generators.

A hypergraph is conformal if the cliques of its’ 2-section graph are the edges of
the hypergraph. Thus a model H is graphical, if the hypergraph with generators,
that is, edges, H is conformal. In Badsberg (1996b) an algorithm for testing this
can be found.

Definition 3 Two subsets a and b form a decomposition of V (H) relative to a
hypergraph H = (V(H),H), if a ∪ b = V (H), a \ b 6= ∅, b \ a 6= ∅, a and b are
separated by a ∩ b in the 2-section graph of H, and a ∩ b ⊆ c for some generator of
H.

If a hypergraph is conformal and further the 2-section graph of the hypergraph
is decomposable, then the hypergraph is acyclic. For a hierarchical model to be de-
composable, the hypergraph of the model has to be acyclic, that is, the hypergraph
has to be conformal and the 2-section graph of the model has to be decomposable.
(A hypergraph need not be a generating class hypergraph to be an acyclic hyper-
graph, that is, an acyclic hypergraph may contain edges that are subsets of other
edges.)

For hypergraphs the terms reducible, irreducible (prime) and irreducible compo-
nent (maximal prime subgraph) are defined analogously to graphs.

On contingency tables a decomposable model is a log-linear model associated
with a decomposable graph or an acyclic hypergraph, a graphical model is associated
with a graph or a conformal hypergraph, and each (generating class) hypergraph
corresponds to a hierarchical model.



DSC 2003 Working Papers 8

Dual representation

The dual representation of a model is the minimal interaction terms set to zero, see
Edwards and Havránek (1987).

Collapsible

Definition 4 A hierarchical log-linear model M is collapsible onto a, if one of the
two following equivalent properties hold:

i) for all p = p(i) ∈M, we have that p(ia) ∈Ma,

ii) for all ia ∈ Ia, p̂(ia) = p̂a(ia).

For proof of equivalence, see Asmussen and Edwards (1983). Note that p̂(ia) is the
marginalized maximum likelihood estimate whereas p̂a(ia) is the maximum likeli-
hood estimate in the restricted model Ma. See (e.g.) Lauritzen (1996) for notation
for cells and probabilities.

Theorem 2.3 of Asmussen and Edwards (1983) states that a hierarchical model
M is collapsible onto a, if and only if the boundary of every connected component
of ac is contained in a generator of M.

An algorithm for determining the smallest set containing a given set such that
a given hierarchical log-linear model is collapsible onto the set can be found in
Badsberg (1996a).

Mixed models

For mixed models, models with both discrete and continuous variables, the following
queries can be returned from CoCoCg: MIM-model, homogeneous, mean-linear, D-
collapsible, Q-equivalent. See Edwards (1990), Edwards (2000) or Lauritzen (1996)
for definition of the three first terms and Edwards (2000) for the two last terms.
These characteristics can be returned in CoCoCg as flags for each irreducible com-
ponent of a mixed model when returning junction trees.

Model edition

In CoCo and CoCoCg the most fundamental model editing actions are, Badsberg
(2001):

Generate graphical: A graphical model is generated for a hierarchical model by
finding the cliques of the 2-section graph of the model. Generate decomposable: A
chordal cover is made by adding a fill-in to the 2-section graph of a model. Adding
and dropping of edges: These operations are performed on the 2-section graph of a
model, and the new models are formed by finding the cliques of the resulting graphs.
Add interaction: Add interaction trivially adds generators to the generating class
of a model, and cleans up the resulting set of sets by removing subsets of other
generators to form a generating class. Drop interaction: The action to do is to
to add generators to the dual representation of the model. Supersets of others
sets in the resulting set of sets are removed and the normal representation for the



DSC 2003 Working Papers 9

resulting dual representation is found. Meet (or intersection) of two models is the
largest model contained in both models. Join (or union) of two models is the
smallest model containing both models, and forms the same generating class as
adding interactions does.

In model selection (e.g.) it is interesting to know whether a model is decompos-
able after dropping an edge. Since finding the cliques from an edge list can be hard
this query should not be answered by first removing the edge from the 2-section
graph of the model, then find the cliques of the resulting model, and finally deter-
mine whether this model is decomposable. It is much easier to answer the query
by investigating whether the edge to drop is the subset of exactly one clique of the
initial model. Similarly for other queries. Thus queries about the class of a model
can be asked with one of the model editing operations as additional argument. A
important query taking two models as arguments is the query testing whether the
two models are nested.

2 Examples

Returning sets and generating classes for components of the
graph

The following will on a final model of Edwards and Havránek (1987) show examples
on returning components as neighbours, connected components, prime components,
separators, shortest paths and cut sets:

> library(CoCo)
Loading required package: methods
Loading required package: CoCoCore
Loading 3/4 of the CoCo-bundle. Copyright, Jens Henrik Badsberg, 2002.

o CoCoCore: The single interface function for communication bet-
ween R (Splus) and CoCo, and 134 auxiliary functions.

o CoCoObjects: About 24 functions for creating CoCo- and CoCo-model-
objects, and for recovering these objects.

o CoCoOldData: About 45 deprecated functions for reading CoCo-data
from files and for setting and returning options.

o CoCoRaw: The 71 (103) functions of interest to you.

For documentation see, Badsberg, J.H.: A guide to CoCo, JSS, 2001, and
Badsberg, J.H.: Xlisp+CoCo, Aalborg, 1996. The names of the functions
of R+CoCo are similar to those of Xlisp+CoCo; with ’-’ replaced by ’.’
or for a few functions omitted and the following letter capitalized.
Some functions have been replaced by arguments to others, e.g. all the
set-.. commands replaced by optionsCoCo(), and the functions collected
in editModel(). A very few commands have been renamed.
The manual pages will give you the form of arguments of the functions.



DSC 2003 Working Papers 10

The four calls ’’data(Reinis); read.model("*", coco.id = Reinis);
backward(recursive=T); eh()’’ will give you a small example.
Please quit by ’.quit()’ to remove temporary files.

Loading required package: CoCoObjects
Loading required package: CoCoRaw
> data(Reinis)
> read.model("ACE,ADE,BC,F;", coco.id = Reinis)
Recovering CoCo-object: ’ Reinis ’.

CoCo - A program for estimation, test and model search
in very large ‘Co’mplete and ‘InCo’mplete ‘Co’ntingency tables.
1.5.R2.138 Fri Dec 20 09:00:00 CET 2002
Compiled with cc, a C compiler for ...
Copyright (c) 1991, by Jens Henrik Badsberg
Licensed to ...

Setting slot-value .specification of ’ Reinis ’.
Setting slot-value .observations of ’ Reinis ’.

[1] "ACE,ADE,BC,F;"
> return.sets(type = "neighbours", set = "AC")
$string
[1] "[[BDE]]"

> return.sets(model = "current",
+ type = "connected.components")
$string
[1] "[[F][ABCDE]]"

> return.sets(model = "current",
+ type = "connected.component", set = "C")
$string
[1] "[[ABCDE]]"

> return.sets(model = "current", type = "prime.components")
$string
[1] "[[F][BC][ADE][ACE]]"

> return.sets(model = "current", type = "separators")
$string
[1] "[[C][AE]]"

> return.sets(model = "current", type = "shortests.paths",
+ u = "D", v = "B")
$string



DSC 2003 Working Papers 11

[1] "[[AC][CE]]"

> return.sets(model = "current", type = "cut.sets",
+ u = "B", v = "D")
$string
[1] "[[C][AE]]"

> return.sets(model = "current", type = "cut.sets",
+ set.a = "B", set.b = "AD")
$string
[1] "[[C]]"

Returning vertex orders orders

Vertex orders are returned in a matrix with the columns ordered as the order of the
vertices in the specification of the data, or with the columns ordered as the found
vertex order. The paths found in the previous section gives the vertices of the paths
from “D” to “B”, but not the order in which the vertices should be visited. This
order can also be found by the function return.vertex.order.

> read.model("[[F][BC][AD][DE][AC][CE]];")
[1] "[[F][BC][AD][DE][AC][CE]];"
>
> # Lex-M order:
> return.vertex.order(model = "current", invers.order = FALSE,
+ default.order = FALSE, max.card = FALSE)

A B C D E F
Order 6 2 5 4 3 1
Complete 1 1 1 1 0 1
>
> # Lex-M order, inverse:
> return.vertex.order(model = "current", invers.order = TRUE,
+ default.order = FALSE, max.card = FALSE)

[,1] [,2] [,3] [,4] [,5] [,6]
Index "5" "1" "4" "3" "2" "0"
Complete "1" "1" "0" "1" "1" "1"
Name "F" "B" "E" "D" "C" "A"
>
> # Max-card order:
> return.vertex.order(model = "current", invers.order = FALSE,
+ default.order = FALSE, max.card = TRUE)

A B C D E F
Order 6 4 5 3 2 1
Complete 1 1 1 1 0 1
>
> # Lex-M order, start by ordering "F":



DSC 2003 Working Papers 12

> return.vertex.order(model = "current", invers.order = FALSE,
+ default.order = FALSE, max.card = FALSE,
+ marked = "F")

A B C D E F
Order 5 1 4 3 2 6
Complete 1 1 1 1 0 1
>
> # Return a vertex order for the path from "B" to "D"
> return.vertex.order(model = "current", sub.path = TRUE,
+ path.order = TRUE,
+ marked = paste("AEC"), u = "B", v = "D")

[,1] [,2] [,3] [,4]
Index "1" "2" "4" "3"
Name "B" "C" "E" "D"

Queries to models and sets returning a boolean

The queries about the class of a model, whether a model is a submodel of an other
model and the test of whether a set is a complete separator of the model returns a
boolean.

> read.model("[[F][BC][AD][DE][AC][CE]];")
[1] "[[F][BC][AD][DE][AC][CE]];"
>
> property.model(model = "current", "graphical")
[1] TRUE
> property.model(model = "current", "decomposable")
[1] FALSE
> property.model(model = "current", "connected")
[1] FALSE
> property.model(model = "current", "tree")
[1] TRUE
>
> property.set(model = "current", query = "separator", set = "AE;")
[1] FALSE
>
> read.model("[[F][BC][ADE][ACE]];")
[1] "[[F][BC][ADE][ACE]];"
>
> property.model(model = "current", "graphical")
[1] TRUE
> property.model(model = "current", "decomposable")
[1] TRUE
> property.model(model = "current", "decomposable",
+ prior.action = "drop.edges", modification = "BC;")
[1] TRUE



DSC 2003 Working Papers 13

> property.model(model = "current", "decomposable",
+ prior.action = "drop.edges", modification = "AE;")
[1] FALSE

Editing models

The model editing functions will return a boolean, true, if the model resulting of
applying the modification is different from the model of the argument. The resulting
model can be returned by return.model.

> read.model("ACE,ADE,BC,F;")
[1] "ACE,ADE,BC,F;"
>
> editModel(action = "normal.to.dual") ;
[1] TRUE
> printModel("last")
Model no. 2 [[BE][BD][AB][CD][AF][BF][CF][DF][EF]]
[1] TRUE
>
> editModel(action = "dual.to.normal") ;
[1] TRUE
> printModel("last")
Model no. 3 [[BDE][CDE][ABE][ABD][ACD]]
[1] TRUE
>
> editModel(action = "collaps.model", modification = "CD;") ;
[1] TRUE
> printModel("last")
Model no. 4 [[ACE][ADE]]
[1] TRUE
>
> editModel(action = "marginal.model", modification = "CD;") ;
[1] TRUE
> printModel("last")
Model no. 5 [[CD]]
[1] TRUE
>
> editModel(action = "drop.interactions", modification = "ACE;")
[1] TRUE
> current()
[1] TRUE
> printModel("last")
Model no. 6 [[F][ADE][CE][AC][BC]]
[1] TRUE
>
> editModel(action = "generate.graphical") ;



DSC 2003 Working Papers 14

[1] TRUE
> printModel("last")
Model no. 7 [[ACE][ADE][BC][F]]
[1] TRUE
>
> editModel(action = "drop.edges", modification = "AE;")
[1] TRUE
> printModel("last")
Model no. 8 [[F][AD][DE][CE][AC][BC]]
[1] TRUE
>
> editModel(action = "generate.decomposable") ;
[1] TRUE
> printModel("last")
Model no. 9 [[ACE][ADE][BC][F]]
[1] TRUE
>
> read.model("ACE,ADE,BC,F;")
[1] "ACE,ADE,BC,F;"
>
> editModel(action = "drop.edges", modification = "AE") ;
[1] TRUE
> printModel("last")
Model no. 11 [[F][BC][AD][DE][AC][CE]]
[1] TRUE
>
> editModel(action = "add.edges", modification = "CD") ;
[1] TRUE
> printModel("last")
Model no. 12 [[ACDE][F][BC]]
[1] TRUE
>
> editModel(action = "drop.interactions", modification = "AE") ;
[1] TRUE
> printModel("last")
Model no. 13 [[F][DE][AD][CE][AC][BC]]
[1] TRUE
>
> # editModel(action = "add.interactions", modification = "ACDE") ;
> # printModel("last")
>
> base()
[1] TRUE
> read.model(order = 1, set = "*") ;
14: [[EF][DF][DE][CF][CE][CD][BF][BE][BD][BC][AF][AE][AD][AC][AB]]

Model is not graphical



DSC 2003 Working Papers 15

Cliques:[[ABCDEF]]
2-Section Graph is decomposable
[1] TRUE
>
> editModel(action = "meet.of.models") ;
[1] TRUE
> printModel("last")
Model no. 15 [[AC][AD][AE][BC][CE][DE][F]]
[1] TRUE
> editModel(action = "join.of.models") ;
[1] TRUE
> printModel("last")
Model no. 16 [[ACE][ADE][AB][AF][BC][BD][BE][BF][CD][CF][DF][EF]]
[1] TRUE

Returning the formula for the MLE for discrete models

For pure discrete data the index of the graph can be returned for decomposable
models from CoCo. For non-decomposable models the returned values are extended
with specification of non-decomposable irreducible components. The returned val-
ues is a structure with 3 components: a text string with sets for complete irreducible
components and separators and sets and generating classes of non-decomposable ir-
reducible components, the index of the sets for complete components and separators,
and a real for the variables specified in the data, but not in the model.

> read.model("[[F][BC][AD][DE][AC][CE]];")
[1] "[[F][BC][AD][DE][AC][CE]];"
>
> printFormula()
P [[CE][AC][DE][AD][BC][F]] ( I [ABCDEF] ) =
N ( I [] ) ^ -1 *
N ( I [F] ) ^ 1 *
N ( I [C] ) ^ -1 *
N ( I [BC] ) ^ 1 *
F [[AC][CE][DE][AD]] ( I [ACDE] ) *
1.0000000

[1] TRUE
>
> return.decomposition(model = "current", type = "expression")
[[1]]
[1] "[][F][C][BC]/{[ACDE],[AD][DE][CE][AC]}//"

[[2]]
[1] -1 1 -1 1

[[3]]



DSC 2003 Working Papers 16

[1] 1

Returning junction trees for mixed models

Junction trees of a model can only be returned from the module CoCoCg (where
the above index not is available). The returned value can be a structure with a
tree, the leafs being sets or models (in a text string). The following example is on
Edwards (2000).

> library(CoCoCg)
Loading required package: methods
Loading required package: CoCoCore
Loading required package: CoCoObjects
Loading required package: CoCoRaw
Loading required package: CoCo
>
> read.model("ab/abx,aby/abxy ; ", coco.id = Rats)
Recovering CoCo-object: ’ Rats ’.

No-Name - A program for estimation (etc.) in
Mixed Interaction Models and small CGregressions.
Version(0.00.a.) Mon Jan 6 11:00:05 CET 2003
Compiled with cc or gcc, a C compiler for ...
Copyright (c) 1996, by Jens Henrik Badsberg
Licensed to ...

Setting slot-value .specification of ’ Rats ’.
Setting slot-value .observations of ’ Rats ’.

24 cases read.
[1] "ab/abx,aby/abxy ; "
> read.model("[[ab]] / [[y][ax]] / [[xy]]")
[1] "[[ab]] / [[y][ax]] / [[xy]]"
> test()
Test of [[xy][ax][ab]]
against [[abxy]]

Statistic Asymptotic Adjusted
-2log(Q) = 76.0848 P = 6.299E-06
Power = - P = -
X^2 = - P = -
DF. = 24
F-stat. = 17.1092 Df = 24, 18 P = 4.470E-08
[1] TRUE
> printModel("all")
Model no. 2 [[ab]] / [[ax][y]] / [[xy]] /CURRENT/
Model no. 1 [[ab]] / [[aby][abx]] / [[abxy]] /BASE/



DSC 2003 Working Papers 17

[1] TRUE
> printFormula()
P [[ab]] / [[ax][y]] / [[xy]] ( I [abxy] ) =
1.000000000
/ 12/ Modl is homogeneous: [[ab]] / [[ax][y]] / [[xy]]
/ 6/ Model is continuous: [[xy]]
F ( I [xy] % [[]] / [[x][y]] / [[xy]] ) [m][d][l][q]
/ 9/ Modl is homogeneous: [[ab]] / [[ax]] / [[x]]
/ 5/ Modl is homogeneous: [[a]] / [[ax]] / [[x]]
F ( I [ax] % [[a]] / [[ax]] / [[x]] ) [m][d][l][q]

/ 6/ Model is discrete: [[ab]]
F ( I [ab] % [[ab]] / [] / [] ) [m][d][l][q]

COV ( [a] ) ^ -1
COV ( [x] ) ^ -1

[1] TRUE
>
> # Junction tree, with generators:
> return.junction.tree(model = FALSE, type = "junction.tree.components",
+ split.models = FALSE, split.generators = FALSE,
+ omit.generators = FALSE)
$left
$left$variables
[1] "[xy]"

$left$model
[1] "[[]]/[[x][y]]/[[xy]]"

$separator
[1] "<[x]>"

$right
$right$left
$right$left$variables
[1] "[ax]"

$right$left$model
[1] "[[a]]/[[ax]]/[[x]]"

$right$separator
[1] "<[a]>"

$right$right
$right$right$variables
[1] "[ab]"

$right$right$model



DSC 2003 Working Papers 18

[1] "[[ab]]/[]/[]"

> # Junction tree split in structure,
> # without generators, e.i. the models:
> return.junction.tree(model = FALSE, type = "junction.tree.components",
+ split.sets = TRUE, omit.generators = TRUE)
$left
[1] "[xy]"

$separator
[1] "x"

$right
$right$left
[1] "[ax]"

$right$separator
[1] "a"

$right$right
[1] "[ab]"

References

Asmussen, S. and Edwards, D. (1983). Collapsibility and response variables in
contingency tables, Biometrika 70: 567–578.

Badsberg, J. H. (1996a). Algorithms for collapsing log linear models onto sets
containing a given set, Research Report R 94–2033, Department of Mathematics
and Computer Science, Aalborg University, Denmark.

Badsberg, J. H. (1996b). Decomposition of graphs and hypergraphs with identi-
fication of conformal hypergraphs, Research Report R 94–2032, Department of
Mathematics and Computer Science, Aalborg University, Denmark.

Badsberg, J. H. (2001). A guide to CoCo, Journal of Statistical Software 6(4): 1–178.
http://www.jstatsoft.org/v06/.

Darroch, J. N., Lauritzen, S. L. and Speed, T. P. (1980). Markov fields and log-linear
interaction models for contingency tables, Annals of Statistics 8: 522–539.

Edwards, D. (1990). Hierarchical interaction models (with discussion), Journal of
the Royal Statistical Society, Series B 52: 3–20 and 51–72.

Edwards, D. (2000). Introduction to Graphical Modelling, Second Edition, Springer-
Verlag, New York.



DSC 2003 Working Papers 19

Edwards, D. and Havránek, T. (1987). A fast model selection procedure for large
families of models, Journal of the American Statistical Association 82: 205–213.

Haberman, S. J. (1972). Log-linear fit for contingency tables, Algorithm AS 51,
Appl. Statist. 21: 218–227.

Jensen, F. V. (1988). Junction trees and decomposable hypergraphs, Research
report, JUDEX Ltd., Aalborg.

Jiroušek, R. (1991). Solution of the marginal problem and decomposable distribu-
tions, Kybernetike 27(5): 403–412.

Lauritzen, S. L. (1996). Graphical Models, Oxford University Press, Oxford.

Lauritzen, S. L., Speed, T. P. and Vijayan, K. (1984). Decomposable graphs and
hypergraphs, J. Austral. Math. Soc. (Series A) 36: 12–29.

Leimer, H.-G. (1993). Optimal decomposition by clique separators, Discrete Math-
ematics 113: 90–123.

Rose, D. J., Tarjan, R. E. and Lueker, G. S. (1976). Algorithmic aspects of vertex
elimination on graphs, SIAM Journal on Computing 5: 266–283.

Tarjan, R. E. (1985). Decomposition by clique separators, Discrete Mathematics
55: 221–232.

Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs, SIAM Journal on Computing 13: 566–579.


	Notation
	Examples

